Skip to main content
Log in

Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 , NO3 , PO4 3−), and selected major ions (SO4 2−) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altansukh, O. (2008). Surface water quality assessment and modelling—a case study in the Tuul River, Ulaanbaatar city, Mongolia. MSc, Water Resource Management, International Institute for Geo-information Science and Earth Observation.

  • Avlyush, S. (2011). Effects of surface gold mining on macroinvertebrate communities. A case study in river systems in the north-east of Mongolia. Saarbrücken: Lambert Academic.

    Google Scholar 

  • Batbayar, G., Karthe, D., Pfeiffer, M., von Tümpling, W., & Kappas, M. (2015). Influence of urban settlement and mining activities on surface water quality in northern Mongolia. In D. Karthe, S. Chalov, N. Kasimov, & M. Kappas (Eds.), Water and environment in the Selenga-Baikal Basin: international research cooperation for an ecoregion of global relevance. Stuttgart: Ibidem.

    Google Scholar 

  • Batsukh, N., Dorjsuren, D., & Batsaikhan, G. (2008). The water resources, use and conservation in Mongolia. First national report. Ulaanbaatar: National Water Committee.

  • Brinkhof, T. (2015). City Population. http://www.citypopulation.de. Accessed on 11.03.2016.

  • Census (2010). City Population. http://en.ubseg.gov.mn/. Accessed on 11.03.2016.

  • Chalov, S., Jarsjö, J., Kasimov, N., Romanchenko, A., & Pietron, J. (2015). Spatio-temporal variation of sediment transport in the Selenga River basin, Mongolia and Russia. Environmental Earth Science. doi:10.1007/s12665-014-3106-z.

  • Chalov, S., Thorslund, J., Kasimov, N. S., Nittrouer, J., Iliyecheva, E., Pietron, J., Shinkareva, G., Lychagin, M., Aybullatov, D., Kositky, A., Tarasov, M., Akhtman, Y., Garmaev, E., Karthe, D., & Jarsjö, J. (2016). The Selenga River delta: a geochemical barrier protecting Lake Baikal waters. Regional Environmental Change. doi:10.1007/s10113-016-0996-1.

  • Dalai, B., & Ishiga, H. (2013). Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin. Mongolia Environmental Monitoring Assessment., 185, 2869–2881. doi:10.1007/s10661-012-2757-z.

    Article  CAS  Google Scholar 

  • Gardemann, E., & Stadelbauer, J. (2012). Städtesystem und regionale Entwicklung in der Mongolei: Zwischen Persistenz und Transformation. Geographische Rundschau, 64(12), 34–41.

    Google Scholar 

  • Hofmann, J., Hürdler, J., Ibisch, R., Schaeffer, M., & Borchardt, D. (2011). Analysis of recent nutrient emission pathways, resulting surface water quality and ecological impacts under extreme continental climate: the Kharaa River basin (Mongolia). International Review of Hydrobiology, 96(5), 484–519. doi:10.1002/iroh.201111294.

    Article  CAS  Google Scholar 

  • Hofmann, J., Watson, V., & Scharaw, B. (2015). Groundwater quality under stress: contaminants in the Kharaa River basin (Mongolia). Environmental Earth Science. doi:10.1007/s12665-014-3148-2.

  • Hokanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001. doi:10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Hülsmann, L., Geyer, T., Schweitzer, C., Priess, J., & Karthe, D. (2015). The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa River basin in northern Mongolia. Environmental Earth Science, 73, 581–592. doi:10.1007/s12665-014-3173-1.

  • Inam, E., Khantotong, S., Kim, K. W., Tumendemberel, B., Erdenetsetseg, S., & Puntsag, T. (2011). Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environmental Geochemistry and Health, 33(S1), 57–69. doi:10.1007/s10653-010-9347-1.

  • Itoh, M., Takemon, Y., Makabe, Y., Yoshimizu, C., Kohzu, A., Ohte, N., Tumurskh, D., Tayasua, I., Yoshida, N., & Nagata, T. (2011). Evaluation of wastewater nitrogen transformation in a natural wetland (Ulaanbaatar, Mongolia) using dual-isotope analysis of nitrate. Science of the Total Environment, 409(8), 1530–1538.

  • Javzan, C. (2011). Hydrochemistry of Orkhon river catchment. Ulaanbaatar: Institute of Geoecology.

    Google Scholar 

  • Javzan, C., Erdenebat, M., Enkhtuya, M., Tsengelmaa, B., & Saulyegul, A. (2004). Water situation and pollution of the Tuul River. Ulaanbaatar: Institute of Geoecology.

    Google Scholar 

  • Karthe, D., Chalov, S., Malsy, M., Menzel, L., Theuring, P., Hartwig, M., Schweitzer, C., Hofmann, J., Priess, J., Shinkareva, G., & Kasimov, N. (2014). Integrating multi-scale data for the assessment of water availability and quality in the Kharaa-Orkhon-Selenga River system. Geography, Environment, Sustainability, 3(7), 65–86.

  • Karthe, D., Chalov, S., & Borchardt, D. (2015a). Water resources and their management in Central Asia in the early twenty first century: status; challenges and future prospects. Environmental Earth Science, 73(2), 487–499. doi:10.1007/s12665-014-3789-1.

  • Karthe, D., Heldt, S., & Houdret, A. (2015b). IWRM in a country under rapid transition: lessons learnt from the Kharaa River basin, Mongolia. Environmental Earth Science, 73(2), 681–695. doi:10.1007/s12665-014-3435-y.

  • Karthe, D., Hofmann, J., Ibisch, R., Heldt, S., Westphal, K., Menzel, L., Avlyush, S., & Malsy, M. (2015c). Science-based IWRM implementation in a data-scarce central Asian region: experiences from a Research and Development project in the Kharaa River basin, Mongolia. Water, 7(7), 3486–3514. doi:10.3390/w7073486.

    Article  Google Scholar 

  • Karthe, D., Heldt, S., Rost, G., Londong, J., Ilian, J., Heppeler, J., Khurelbaatar, G., Sullivan, C., van Afferden, M., Stäudel, J., Scharaw, B., Westerhoff, T., Dietze, S., Sigel, K., Hofmann, J., Watson, V., & Borchardt, D. (2016). Modular concept for municipal waste water management in the Kharaa River Basin, Mongolia. In: D. Borchardt, J. Bogardi, R. Ibisch (Eds.), Integrated water resources management: concept, research and implementation (pp. 649–681). Heidelberg and New York.

  • Kaus, A., Schäffer, M., Karthe, D., Büttner, O., von Tümpling, W., & Borchardt, D. (2016). Regional patterns of heavy metal concentrations in water, sediment and five consumed fish species of the Kharaa River basin, Mongolia. Regional Environmental Change. doi:10.1007/s10113-016-0969-4.

  • KEI Korea Environment Institute. (2010). Integrated water management model on the Selenga River basin—status survey and integration. Seoul: Korea Environment Institute.

    Google Scholar 

  • McIntyre, N., Bulovic, N., Cane, I., & McKenna, P. (2016). A multi-disciplinary approach to understanding the impacts of mines on traditional uses of water in northern Mongolia. Science of the Total Environment, 557-558, 404–414. doi:10.1016/j.scitotenv.2016.03.092.

    Article  CAS  Google Scholar 

  • Menzel, L., Hofmann, J., & Ibisch, R. (2011). Untersuchung von Wasser und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen Management im Kharaa-Einzugsgebiet (Mongolei). Hydrologie und Wasserbewirtschaftung, 55(2), 88–103.

    Google Scholar 

  • MNS (1998). Mongolian National Standard 4568—water quality, general requirements. Authority for standard and measurement 4586:98.

  • Mongolian Ministry for Environment Green Development (MEGD). (2012). Integrated Water Resource Management National Assessment Report—Vol. I & Vol. II. Ulaanbaatar.

  • Nadmitov, B., Hong, S., Kang, S., Chu, J., Gomboev, B., Janjivdorj, L., Lee, C., & Khim, J. (2015). Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River basin (2007–2009). Environmental Science and Pollution Research, 22, 2856–2867. doi:10.1007/s11356-014-3564-6.

  • Neupert, R. F. (1999). Population, nomadic pastoralism and the environment in the Mongolian plateau. Population and Environment, 20(5), 413–441. doi:10.1023/A:1023309002127.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, GF., Kindt, R., Legendre, P., Minchin, PR., O'Hara, BR., Simpson, GL., Solymos, P., Stevens, MHH., & Wagner, H. (2013). VEGAN: Community Ecology Package. R package version 2.0–10.

  • Pekey, H., Karakas, D., Ayberk, S., Tolun, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953.

    Article  CAS  Google Scholar 

  • Pfeiffer, M., Batbayar, G., Hofmann, J., Siegfried, K., Karthe, D., & Hahn-Tomer, S. (2015). Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environmental Earth Science, 73(2), 649–662. doi:10.1007/s12665-013-3029-0.

    Article  CAS  Google Scholar 

  • Regdel, D., Dugarzav, C., Gunin, P., & D. (2012). Ecological demands on socioeconomic development of Mongolia under climate aridization. Arid Ecosystems, 2(1), 1–10. doi:10.1134/S2079096112010076.

    Article  Google Scholar 

  • RNS Russian National Standard 16326 (2010). Water quality standard, Russia.

  • Samhan, S., Friese, K., von Tümpling, W., Pöllmann, H., Hoetzl, H., & Ghanem, M. (2014). Anthropogenic influence of trace metals in sediments of the al-Qilt catchment, West Bank, Palestine: 1. Contamination factor and bonding forms. Environmental Earth Sciences, 71, 1533–1539. doi:10.1007/s12665-013-2559-9.

    Article  CAS  Google Scholar 

  • Sandmann, R. (2012). Gier nach Bodenschätzen und Folgen für die Mongolei. Geographische Rundschau, 64(12), 26–33.

    Google Scholar 

  • Spoorenberg, T. (2015). Reconstructing historical fertility change in Mongolia: impressive fertility rise before continued fertility decline. Demographic Research, 33(29), 841–870.

    Article  Google Scholar 

  • Stubblefield, A., Chandra, S., Eagan, S., Tuvshinjargal, D., Davaadorzh, G., Gilroy, D., Sampson, J., Thorne, J., Allen, B., & Hogan, Z. (2005). Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integrated Environmental Assessment and Management, 1(4), 365–373.

    Article  CAS  Google Scholar 

  • Technical Report, I. U. P. A. C. (2002). Harmonized guidelines for single-laboratory validation of methods of analysis. Pure and Applied Chemistry, 74(5), 835–855.

  • Thorlsund, J., Jarsjö, J., Wällstedt, T., Mörth, C. M., Lychagin, M. Y., & Chalov, S. R. (2016). Speciation and hydrological transport of metals in non-acidic river systems of the Lake Baikal basin: field data and model predictions. Regional Environmental Change. doi:10.1007/s10113-016-0982-7.

  • UNOPS (2013). Lake Baikal basin transboundary diagnostic analysis. http://baikal.iwlearn.org/en.

  • Wehrens, R., & Buydens, L. (2007). Self and super organizing maps in R, the Kohonen package. Journal of Statistical Software, 21(5), 1–19.

    Article  Google Scholar 

  • Wellmitz, J., Gluschke, M.(2005). Leitlinie zur Methodenvalidierung. Texte 01/05 ISSN 0722-186X, http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2832.pdf. 22 April 2016).

  • Zdenka, S., Richard, L., Jana, M., & Blanka, V. (1993). Water quality and fish health, EIFAC technical paper 54 (p. 23). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the German ministry of education and research (BMBF grant no. 033L003A) and the German Academic Exchange Service (DAAD) (Scholarship No. A/12/97034 for GB). We would like to express special gratitude to staff members of Department of the Aquatic Ecosystem Analysis and Management (UFZ) for all support during the study and to the water analysis and chemometrics team of the River Ecology Department, UFZ, for sample analysis and preparation. Special thanks for Prof. Dr. Galbadrakh, R.; Dr. Saulyegul, A.; Dr. Enkhdol, T.; Batchuluun, Ts.; Irmuunzaya, Kh.; and Bolortuya, B. for their valuable help and support of the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunsmaa Batbayar.

Appendix

Appendix

Table 12 Factor loadings, eigenvectors, and the contribution of the single variables to the overall variability for the PCA
Fig. 9
figure 9

Self-organizing map (SOM) in relation to river water samples names. Unpolluted samples were put to the upper part of the map, while water samples with high concentrations were located in the lower part with the samples of high metal content to the left and high nutrient content to the right

Fig. 10
figure 10

Self-organizing map (SOM) showing the longitudinal patterns of the water chemistry parameters of river water samples. Red color regions in the map indicate high values, whereas blue color regions indicate low values

Fig. 11
figure 11

The map is showing the spatial pattern of the water quality index in the Mongolian part of Selenga River basin and its tributaries at one site in 2014 and 2015. The circles are indicating water quality from very clean (smallest circle) to very dirty (biggest circle). Concentric rings in one location indicate different water quality in both years

Fig. 12
figure 12

Changes of trace elements concentrations along the Kharaa River. The flow direction is from left to right. Sampling point Kt1 to Kt3b is Gatsuurt River which is the left tributary of Kharaa River. Kt4a to Kt6b is Boroo River which is the left tributary of Kharaa River. Ktm is located along the small mine (Bortolgoi). Kt7 to Kt9 is the right tributary of Kharaa River (Bayangol)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batbayar, G., Pfeiffer, M., von Tümpling, W. et al. Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environ Monit Assess 189, 420 (2017). https://doi.org/10.1007/s10661-017-6123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6123-z

Keywords

Navigation