Skip to main content
Log in

Determination of total mercury in aluminium industrial zones and soil contaminated with red mud

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigated total mercury contents in areas impacted by aluminium plants in Tajikistan and Slovakia and in one area flooded with red mud in Hungary. We present the first determination of total mercury contents in the near-top soil (0–10 and 10–20 cm) in Tajikistan and the first comparative investigation of Tajikistan-Slovakia-Hungary. The Tajik Aluminium Company (TALCO) is one of the leading producers of primary aluminium in Central Asia. In the past 30 years, the plant has been producing large volumes of industrial waste, resulting in negative impacts on soil, groundwater and air quality of the surrounding region. Mercury concentrations were significant in Slovakia and Hungary, 6 years after the flooding. In studied areas in Slovakia and Hungary, concentrations of total mercury exceeded the threshold limit value (TLV = 0.5 mg Hg kg−1). However, in Tajikistan, values were below the TLV (0.006–0.074 mg kg−1) and did not significantly vary between depths. Total Hg in Slovakia ranged from 0.057 to 0.668 mg kg−1 and in Hungary from 0.029 to 1.275 mg kg−1. However, in the plots near to the red mud reservoir and the flooded area, Hg concentrations were higher in the upper layers than in the lower ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anton, A., Rékási, M., Uzinger, N., Széplábi, G., & Makó, A. (2012). Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water, Air, and Soil Pollution, 223, 5175–5188.

    Article  CAS  Google Scholar 

  • Berrow, M. L., Reaves, G. A. 1984. Background levels of trace elements in soils. In Proceedings International Conference Environmental Contamination. London, July 1984, CEP Consultants Ltd, Edinburgh, pp. 333–340.

  • Bertocchi, A. F., Ghiani, M., Peretti, R., & Zucca, A. (2006). Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. Journal of Hazardous Materials B, 134, 112–119.

    Article  CAS  Google Scholar 

  • Conaway, C. H., Mason, R. P., Steding, D. J., & Flegal, A. R. (2005). Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, California. Atmospheric Environment, 39, 101–105.

    Article  CAS  Google Scholar 

  • Čurlík, J., Šefčík, P., 1999. Geochemical atlas of the Slovak Republic, part V: soils. Ministry of the environment of the Slovak republic, Soil science and conservation research institution, Bratislava. ISBN 80-88833-14-0.

  • Decree, J., Vi, N., Eüm, K., 2000. Draft Translation 1–26.

  • Dombaiová, R., Huang, J.-H., & Matzner, E. (2005). Mercury and methylmercury in soils and plants of differently contaminated sites in Slovakia. Journal of Plant Nutrition and Soil Science, 168, 238–240.

    Article  Google Scholar 

  • Feigl, V., Anton, A., Uzigner, N., & Gruiz, K. (2012). Red mud as a chemical stabilizer for soil contaminated with toxic metals. Water, Air, and Soil Pollution, 223, 1237–1247.

    Article  CAS  Google Scholar 

  • Friesl, W., Horak, O., & Wenzel, W. W. (2004). Immobilization of heavy metals in soils by the application of bauxite residues: pot experiments under field conditions. Journal of Plant Nutrition and Soil Science, 167, 54–59.

    Article  CAS  Google Scholar 

  • García-Sánches, A., Murciego, A., Álvarez-Ayuso, E., Santa Regina, I., & Rodríguez-González, M. A. (2009). Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). Journal of Hazardous Materials, 168, 1319–1324.

    Article  Google Scholar 

  • Gworek, B., Biernacka, E. (1999). Influence of Technological Processes and Improper Storage of Waste on the Mercury Content and Migration in the Soil. In Polish Journal of Environmental Studies. Vol. 8, no. 3, pp. 197–199

  • Hogg, T. J., Stewart, J. W. B., & Bettany, J. R. (1978). Influence of the chemical form of mercury on its adsorption and ability to leach through soils. Journal of Environmental Quality, 7, 440–445.

    Article  CAS  Google Scholar 

  • Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/metaloid-contaminated soil: a review. Journal of Hazardous Materials, 325, 17–30.

    Article  CAS  Google Scholar 

  • Jamnická, G., Bučinová, K., Havranová, I., & Urban, A. (2007). Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. Forest Ecology and Management, 248, 26–35. doi:10.1016/j.foreco.2007.02.033.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (2nd ed.p. 365). London: CRC Press.

    Google Scholar 

  • Klauber, C., Gräfe, M., & Power, G. (2011). Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy, 108, 11–32.

    Article  CAS  Google Scholar 

  • Kovács, T., Sas, Z., Jobbágy, V., Csordás, A., Szeiler, G., & Somlai, J. (2013). Radiological aspects of red mud disaster in Hungary. Acta Geophysica, 61, 1026–1037. doi:10.2478/s11600-013-0113-5.

    Article  Google Scholar 

  • Kuldanbiev, N. K., (2015). Hygienic monitoring of recreational areas Ferghana Valley. Manuscript thesis for the Doctor degree of Medical Sciences, Bishkek 2015.

  • Lockwood, C. I., Mortimer, R. J. G., Stewart, D. J., Mayes, W. M., Peacock, C. I., Polya, D. A., Lythgoe, P. R., Lehoux, A. P., Gruiz, K., & Burke, I. T. (2014). Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions. Applied Geochemistry, 51, 268–277.

    Article  CAS  Google Scholar 

  • Loredo, J., Soto, J., Álvarez, R., & Ordóñez, A. (2007). Atmospheric monitoring at abandoned mercury mine sites in Asturias (NW Spain). Environl Monit Assess, 130, 201–214.

    Article  CAS  Google Scholar 

  • Mora, A., Pisapia, D., González, N., Handt, H., Moreau, C., Vásquez, Y., Márquez, L., & Alfonso, J. A. (2015). Impact of the red mud disposal on several floodplain lagoons of the lower Orinoco River. Water, Air, and Soil Pollution, 226(6). doi:10.1007/s11270-015-2447-x.

  • Nartey, V. K., Klake, R. K., Doamekpor, L. K., Sarpong-Kumankomah, S. (2012) Speciation of mercury in mine waste: case study of abandoned and active gold mine sites at the Bibiani?Anwiaso?Bekwai area of South Western Ghana. Environmental Monitoring and Assessment 184 (12):7623–7634

  • Ochsenkühn-Petropoulou, M. T., Hatzilyberis, K. S., Mendrinos, L. N., & Salmas, C. E. (2002). Pilot—plant investigation of the leaching process for the recovery of scandium from red mud. Industrial & Engineering Chemistry Research, 41, 5794–5801.

    Article  Google Scholar 

  • Ollerová, H., Kontrišová, O., Marušková, A., Kontriš, J. (2004). Mercury content in selected herbs and soil in transect in Žiarska kotlina basin. Current environmental issues from toxicology and ecotoxicology point of view. In Beseda, I. (ed.), 2004. pp. 77- 81. (In Slovak).

  • Online Statistics Education: A Multimedia Course of Study (n.d.) (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University.

  • Qu, Y., & Lian, B. (2013). Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technology, 136, 16–23.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., Scherbatskoy, T., Keeler, G.J. (2002). Mercury accumulation in foliage over time in two northern mixed-harwood forests. In Water, Air and Soil Pollution 133: 49–67.

  • Rubinos, D. A., & Barral, M. T. (2013). Fractionation and mobility of metals in bauxite red mud. Environmental Science and Pollution Research, 20, 7787–7802.

    Article  CAS  Google Scholar 

  • Rubinos, D. A., & Barral, M. T. (2015). Use of red mud (bauxite residue) from the retention of aqueous inorganic mercury (II). Environmental Science and Pollution Research, 22, 17550–17568.

    Article  CAS  Google Scholar 

  • Slovak aluminium company, 2017. SLOVALCO, Nature protection, history. Available at: http://slovalco.sk/en/chranime-prirodu/historia-ekologie/

  • Tajik Soviet Encyclopedia 1986. Dushanbe: Izd. Irfon, vol. 7.

  • Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw metal for the production of Portland cement clinker. Journal of Hazardous Materials, 116, 103–110.

    Article  CAS  Google Scholar 

  • Uzinger, N., Anton, Á. D., Ötvös, K., Tamás, P., & Anton, A. (2015). Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary. Environmental Science and Pollution Research, 22, 9849–9857.

    Article  CAS  Google Scholar 

  • Wang, J. J., Zhao, H. W., Zhong, X. P., Kong, S. F., Liu, Y. S., & Zeng, H. (2011). Investigation of mercury levels in soil around a municipal solid waste incinerator in Shenzhen. Environmental Earth Sciences, 64, 1001–1010. Doi:10.1007/s12665-011-0918-y.

  • Won, J. H., Park, J. Y., & Lee, T. G. (2007). Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmospheric Environment, 41, 7545–7552.

    Article  Google Scholar 

  • World aluminium (2016). Primary aluminium production. Available at: http://www.world-aluminium.org/statistics/ (14.02.2017).

  • World weather & climate information. 2017a. Hungary, climate Ajka, available at: https://weather-and-climate.com/average-monthly-min-max-Temperature-fahrenheit,ajka-veszprem-hu,Hungary.

  • World weather & climate information. 2017b. Slovakia, climate Žiar nad Hronom, available at: https://weather-and-climate.com/average-monthly-min-max-Temperature,ziar-nad-hronom-banskobystricky-kraj-sk,Slovakia.

  • Yuan, C.-G., Li, Q.-P., Feng, Y.-N., & Chang, A.-L. (2010). Fractions and leaching characteristics of mercury in coal. Environmental Monitoring and Assessment, 167, 581–586.

    Article  CAS  Google Scholar 

  • Zhou, J., Wang, Z., Sun, T., Zhang, H., & Zhang, X. (2016). Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: the risk to insects and potential release from wildfires. Environmental Pollution, 212, 188–196. doi:10.1016/j.envpol.2016.01.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oqil Rasulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasulov, O., Zacharová, A. & Schwarz, M. Determination of total mercury in aluminium industrial zones and soil contaminated with red mud. Environ Monit Assess 189, 388 (2017). https://doi.org/10.1007/s10661-017-6079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6079-z

Keywords

Navigation