Skip to main content

Advertisement

Log in

Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L−1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brehm, F. A., Azevedo, J. C. R., Pereira, J. C., & Burrows, H. D. (2015). Direct estimation of dissolved organic carbon using synchronous fluorescence and independent component analysis (ICA): advantages of a multivariate calibration. Environmental Monitoring and Assessment, 187, 703. doi:10.1007/s10661-015-4857-z.

    Article  Google Scholar 

  • Coble, P. G., Green, S. A., Blough, N. V., & Gagosian, R. B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348, 432–435.

    Article  CAS  Google Scholar 

  • Costa, A. S., Passos, E. A., Garcia, C. A. B., & Alves, J. P. H. (2011). Characterization of dissolved organic matter in the Piauí River Estuary, Northeast Brazil. Journal of the Brazilian Chemical Society, 22(11), 2139–2147.

    Article  CAS  Google Scholar 

  • Croué, J. P., Benedetti, M. F., Violleau, D., & Leenheer, J. A. (2003). Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte river: evidence for the presence of nitrogenous binding site. Environmental Science and Technology, 37, 328–336.

    Article  Google Scholar 

  • Cui, H., Shi, J., Qiu, L., Zhao, Y., Wei, Z., Wang, X., et al. (2016). Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang, China. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6230-3.

    Google Scholar 

  • Dong, Q., Li, P., Huang, Q., Abdelhafez, A. A., & Chen, L. (2014). Occurrence, polarity and bioavailability of dissolved organic matter in the Huangpu River, China. Journal of Environmental Science, 26, 1843–1850.

    Article  Google Scholar 

  • Elliott, S., Lead, J. R., & Baker, A. (2006). Characterisation of the fluorescence from freshwater, planktonic bacteria. Water Research, 40(10), 2075–2083.

    Article  CAS  Google Scholar 

  • Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.p. 321). Wiley.

  • Greenwood, P. F., Berwick, L. J., & Croue, J. P. (2012). Molecular characterisation of the dissolved organic matter of wastewater effluents by MSSV pyrolysis GC-MS and search for source markers. Chemosphere, 87(5), 504–512.

    Article  CAS  Google Scholar 

  • Griffith, D. R., McNichol, A. P., Xu, L., McLaughlin, F. A., Macdonald, R. W., Brown, K. A., et al. (2012). Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences, 9, 1217–1224.

    Article  CAS  Google Scholar 

  • Guo, W. D., Stedmon, C. A., Han, Y. C., Wu, F., Yu, X. X., & Hu, M. H. (2007). The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3), 357–366.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Baker, A., Murphy, K. R., Hambly, A., Stuetz, R. M., & Khan, S. J. (2009). Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Research, 43(4), 863–881.

    Article  CAS  Google Scholar 

  • Hudson, N.J. 2010. Organic matter fluorescence properties of some U.K. fresh and waste water. PhD Thesis, UK: University of Birmingham. 338p.

  • Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706–719.

    Article  CAS  Google Scholar 

  • Jaffé, R., Boyer, J. N., Lu, X., Maie, N., Yang, C., Scully, N. M., et al. (2004). Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Marine Chemistry, 84(3–4), 195–210.

    Article  Google Scholar 

  • Kalscheur, K. N., Penskar, R. R., Daley, A. D., Pechauer, S. M., Kelly, J. J., Peterson, C. G., et al. (2012). Effects of anthropogenic inputs on the organic quality of urbanized streams. Water Research, 46(8), 2515–2524.

    Article  CAS  Google Scholar 

  • Kothawal, D. N., von Wachenfeldt, E., Koehler, B., & Tranvik, L. J. (2012). Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Science of the Total Environment, 433, 238–246.

    Article  Google Scholar 

  • Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., & Gonsior, M. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Marine Chemistry, 113(3-4), 182–196.

    Article  CAS  Google Scholar 

  • Leenheer, J. A., & Croué, J. P. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37(1), 18A–26A.

    Article  CAS  Google Scholar 

  • Li, P., Chen, L., Zhang, W., & Huang, Q. (2015). Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis. PloS One. doi:10.1371/journal.pone.0130852.

    Google Scholar 

  • Lu, X., & Jaffé, R. (2001). Interaction between Hg(II) and natural dissolved organic matter: a fluorescence spectroscopy based study. Water Research, 35(7), 1793–1803.

    Article  CAS  Google Scholar 

  • Lu, X. Q., Maie, N., Hanna, J. V., Childers, D. L., & Jaffé, R. (2003). Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Research, 37(11), 2599–2606.

    Article  CAS  Google Scholar 

  • Ma, X. D., & Green, S. A. (2004). Photochemical transformation of dissolved organic carbon in lake superior-an in-situ experiment. J. Gt. Lakes Res., 30, 97–112.

    Article  CAS  Google Scholar 

  • McCarthy, M. D., Hedges, J. I., & Benner, R. (1996). Major biochemical composition of dissolved high molecular weight organic matter in seawater. Marine Chemistry, 55, 281–297.

    Article  CAS  Google Scholar 

  • Meng, F., Drews, A., Mehrez, R., Iversen, V., Ernst, M., Yang, F., Jekel, M., & Kraume, M. (2009). Occurrence, source, and fate of dissolved organic matter (DOM) in a pilot-scale membrane bioreactor. Environmental Science & Technology, 43(23), 8821–8826.

    Article  CAS  Google Scholar 

  • Meng, F., Huang, G., Yang, Y., Li, Z., Li, J., Cao, J., et al. (2013). Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Research, 47, 5027–5039.

    Article  CAS  Google Scholar 

  • Miller, M. P., Simone, B. E., McKnight, D. M., Cory, R. M., Williams, M. W., & Boyer, E. W. (2010). New light on a dark subject: comment. Aquatic Sciences, 72, 269–275.

    Article  CAS  Google Scholar 

  • Moran, M. A., Sheldon, W. M., & Zepp, R. G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography, 45, 1254–1264.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz, R., et al. (2011). Organic matter fluorescence in municipal water recycling schemes: toward a unified. PARAFAC model. Environmental Science & Technology, 45(7), 2909–2916.

    Article  CAS  Google Scholar 

  • Nebbioso, A., & Piccolo, A. (2013). Molecular characterization of dissolved organic matter (DOM): a critical review. Analytical and Bioanalytical Chemistry, 405(1), 109–124.

    Article  CAS  Google Scholar 

  • Nie, Z., Wu, X., Huang, H., Fang, X., Xu, C., Wu, J., et al. (2016). Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6110-x.

    Google Scholar 

  • Patel-Sorrentino, N., Mounier, S., Lucas, Y., & Benaim, J. Y. (2004). Effects of UV-visible irradiation on natural organic matter from the Amazon basin. Science of the Total Environment, 321(1–3), 231–239.

    Article  CAS  Google Scholar 

  • Raymond, P. A., & Bauer, J. E. (2000). Bacterial consumption of DOC during transport through a temperate estuary. Aquatic Mcrobial Ecology, 22, 1–22.

    Article  Google Scholar 

  • Rochelle-Newall, E. J., & Fishe, T. R. (2002). Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Marine Chemistry, 77(1), 7–21.

    Article  CAS  Google Scholar 

  • Schumacher, M., Christl, I., Vogt, R. D., Barmettler, K., Jacobsen, C., & Kretzschmar, R. (2006). Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons. Biogeochemistry, 80(3), 263–275.

    Article  CAS  Google Scholar 

  • Shen, Y., Fichot, C. G., & Benner, R. (2012). Floodplain influence on dissolved organic matter composition and export from the Mississippi Atchafalaya River system to the Gulf of Mexico. Limnology and Oceanography, 57, 1149–1160.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4), 239–254.

    Article  CAS  Google Scholar 

  • Vo-Dinh, T. (1978). Multicomponent analysis by synchronous luminescence spectrometry. Analytical Chemistry, 50(3), 396–401.

    Article  CAS  Google Scholar 

  • Wang, Z., Cao, J., & Meng, F. (2015). Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching. Water Research, 68, 404–413.

    Article  Google Scholar 

  • Winter, A. R., Fish, T. A. E., Playle, R. C., Smith, D. S., & Curtis, P. J. (2007). Photodegradation of natural organic matter fromdiverse freshwater sources. Aquatic Toxicology, 8, 215–222.

    Article  Google Scholar 

  • Xu, N., Saiers, J. E., Wilson, H. F., & Raymond, P. A. (2012). Simulating streamflow and dissolved organic matter export from a forested watershed. Water Resources Research, 48, W05519. doi:10.01029/02011WR011423.

    Article  Google Scholar 

  • Yang, X., Meng, F., Huang, G., Sun, L., & Lin, Z. (2014). Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters the role of salinity. Water Research, 62, 281–292.

    Article  CAS  Google Scholar 

  • Yu, H., Song, Y., Du, E., Yang, N., Peng, J., & Liu, R. (2016). Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6232-1.

    Google Scholar 

  • Zhang, Y., Liu, M., Qin, B., & Feng, S. (2009). Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia, 627, 159–168.

    Article  CAS  Google Scholar 

  • Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., & Zhang, Y. (2011). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Research, 45(16), 5110–5122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lara Palmeira de Macedo Arguelho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arguelho, M.d.L.P.d.M., Alves, J.d.P.H., Monteiro, A.S.C. et al. Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil. Environ Monit Assess 189, 272 (2017). https://doi.org/10.1007/s10661-017-5966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5966-7

Keywords

Navigation