Skip to main content
Log in

Estimation of underwater visibility in coastal and inland waters using remote sensing data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = −0.016, and R 2 = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2 = 0.95 for the satellite-derived Z sd products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TSI:

Trophic state index

SeaWiFS:

Sea-Viewing Wide Field-of-View Sensor

DN:

Digital number

TM:

Thematic mapper

GLMs:

Generalized linear models

GAMs :

Generalized additive models

AC-S:

Absorption and attenuation sensors

BB9:

Backscattering sensors

IOPs:

Inherent optical properties

ECO:

Environmental characterization optics

FLNTU:

Turbidity and fluorescence chlorophyll sensors

TSS:

Total suspended sediment

ABI:

Algal bloom index

RMSE:

Root mean square error

MRE:

Mean root error

NTU:

Nephelometric turbidity unit

SAV:

Submerged aquatic vegetation

CDOM:

Colored dissolved organic matter

a(λ):

Absorption coefficient

a-a w :

Particulate absorption coefficient

b b (λ):

Backscattering coefficient

c-c w :

Particulate attenuation coefficient

Z sd :

Secchi depth

K d :

Vertical diffuse attenuation coefficient

K d,PAR :

Vertical diffuse attenuation coefficient for photosynthetically active radiation

c(λ):

Beam attenuation coefficient

b(λ):

Scattering coefficient

1/(c + K d ):

Length attenuation coefficient

Γ :

Coupling coefficient

E d,λ :

Spectral downwelling irradiance

R rs :

Remote sensing reflectance

L t :

Total radiances

nL w :

Normalized water leaving radiance

N :

Number of data-points

R 2 :

Correlation coefficient

References

  • Akbar, T. A., Hassan, Q. K., & Achari, G. (2014). Development of remote sensing based models for surface water quality. Clean - Soil, Air, Water, 42(8), 1044–1051. doi:10.1002/clen.201300001.

    Article  CAS  Google Scholar 

  • Baban, S. M. (1996). Trophic classification and ecosystem checking of lakes using remotely sensed information. Hydrological Sciences Journal, 41(6), 939–957.

    Article  CAS  Google Scholar 

  • Balali, S., Hoseini, S. A., Ghorbani, R., & Balali, S. (2013). Correlation of chlorophyll-a with Secchi disk depth and water turbidity in the International Alma Gol Wetland, Iran. Middle-East Journal Scientific Research, 13(10), 1296–1301. doi:10.5829/idosi.mejsr.2013.13.10.1124.

    Google Scholar 

  • Berkman, J.A.H., & Canova, M.G. (2007). Algal biomass indicators. In: Myers, D.N., and Sylvester, M.D., National field manual for the collection of water-quality data-Biological indicators: US Geological Survey Techniques of Water-Resources Investigations, book 9. US Geological Survey TWRI, ABI1-ABI86.

  • Berwald, J., Stramski, D., Mobley, C. D., & Kiefer, D. A. (1998). Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean. Limnology and Oceanography, 43(4), 564–576. doi:10.4319/lo.1998.43.4.0564.

    Article  Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. doi:10.4319/lo.1977.22.2.0361.

    Article  CAS  Google Scholar 

  • Chauhan, O. S., Rajawat, A. S., Pradhan, Y., Suneethi, J., & Nayak, S. R. (2005). Weekly observations on dispersal and sink pathways of the terrigenous flux of the Ganga–Brahmaputra in the Bay of Bengal during NE monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 52(14–15), 2018–2030. doi:10.1016/j.dsr2.2005.05.012.

    Article  Google Scholar 

  • Chen, Z., Doering, P. H., Ashton, M., & Orlando, B. A. (2015). Mixing behavior of colored dissolved organic matter and its potential ecological implication in the Caloosahatchee River Estuary, Florida. Estuaries and Coasts, 38(5), 1706–1718. doi:10.1007/s12237-014-9916-0.

    Article  CAS  Google Scholar 

  • Chen, Z., Hu, C., & Muller-Karger, F. (2007a). Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sensing of Environment, 109(2), 207–220. doi:10.1016/j.rse.2006.12.019.

    Article  Google Scholar 

  • Chen, Z., Muller-karger, F. E., & Hu, C. (2007b). Remote sensing of water clarity in Tampa Bay. Remote Sensing of Environment, 109(2), 249–259. doi:10.1016/j.rse.2007.01.002.

    Article  Google Scholar 

  • Cheng, K. S., & Lei, T. C. (2001). Reservoir trophic state evaluation using Lanisat TM images. JAWRA Journal of the American Water Resources Association, 37(5), 1321–1334.

    Article  CAS  Google Scholar 

  • Cialdi, M., & Secchi, P. A. (1865). Sur la transparence de la mer. Comptes Rendus de l'Académie des Sciences, 61.

  • Collier, A., Finlayson, G. M., & Cake, E. W. (1968). On the transparency of the sea: observations made by Mr. Ciladi and P.A. Secchi. Limnology and Oceanography, 13, 391–394.

    Article  Google Scholar 

  • Davies-Colley, R. J. (1988). Measuring water clarity with a black disk. Limnology and Oceanography, 33(4 part 1), 616–623. doi:10.4319/lo.1988.33.4.0616.

    Article  Google Scholar 

  • Deo, A. A., & Ganer, D. W. (2014). Tropical cyclone activity over the Indian Ocean in the warmer climate: monitoring and prediction of tropical cyclones in the Indian Ocean and climate change (pp. 72–80). Dordrecht: Springer. doi:10.1007/978-94-007-7720-0_7.

    Book  Google Scholar 

  • DFAS (2001). Florida LAKEWATCH: a beginner’s guide to water management—water clarity, Information Circular 103, Department of Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, 3rd Edition.

  • Doron, M., Babin, M., Mangin, A., & Hembise, O. (2007). Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. Journal of Geophysical Research, 112(C6), C06003. doi:10.1029/2006JC004007.

    Article  Google Scholar 

  • Effler, S. W. (1988). Secchi disc transparancy and turbidity. Journal of Environmental Engineering, 114(6), 1436–1447.

    Article  Google Scholar 

  • Ellison, C. A., Kiesling, R. L., & Fallon, J. D. (2010). Correlating streamflow, turbidity, and suspended-sediment concentration in Minnesota’s Wild Rice River. 2nd Joint Federal Interagency Conference (p. 10). Las Vegas.

  • Fleming-Lehtinen, V., & Laamanen, M. (2012). Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and Shelf Science, 102, 1–10.

    Article  Google Scholar 

  • Gallegos, C. L. (2001). Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation. Estuaries, 24(3), 381–397.

    Article  CAS  Google Scholar 

  • Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Science of the Total Environment, 268(1–3), 19–29. doi:10.1016/S0048-9697(00)00692-6.

    Article  CAS  Google Scholar 

  • Holmes, R. W. (1970). The Secchi disk in turbid coastal waters. Limnology and Oceanography, 15(5), 688–694. doi:10.4319/lo.1970.15.5.0688.

    Article  Google Scholar 

  • Hou, W., Lee, Z., & Weidemann, A. D. (2007). Why does the Secchi disk disappear? An imaging perspective. Optics Express, 15(6), 2791–2802.

    Article  Google Scholar 

  • Hoyer, M. V., Bigham, D. L., Bachmann, R. W., & Canfield Jr., D. E. (2014). Florida LAKEWATCH: citizen scientists protecting Florida’s aquatic systems. Florida Scientist, 77(4), 184.

    Google Scholar 

  • Kulshreshtha, A., & Shanmugam, P. (2015). An optical method to assess water clarity in coastal waters. Environmental Monitoring and Assessment, 187(12), 742. doi:10.1007/s10661-015-4953-0.

    Article  Google Scholar 

  • Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J., & Lin, G. (2015). Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169(2015), 139–149. doi:10.1016/j.rse.2015.08.002.

    Article  Google Scholar 

  • Levin, I., Darecki, M., Sagan, S., & Radomyslskaya, T. (2013). Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Oceanologia, 55(1), 11–26. doi:10.5697/oc.55-1.011.

    Article  Google Scholar 

  • Ma, J., Song, K., Wen, Z., Zhao, Y., Shang, Y., Fang, C., & Du, J. (2016). Spatial distribution of diffuse attenuation of photosynthetic active radiation and its main regulating factors in inland waters of Northeast China. Remote Sensing, 8(11), 964.

    Article  Google Scholar 

  • Mélin, F., & Hoepffner, N. (2011). Monitoring phytoplankton productivity from satellite—an aid to marine resources management. Handbook of satellite remote sensing image interpretation: applications for marine living resources conservation and management, edited by: Morales, J., Stuart, V., Platt, T., and Sathyendranath, S., EU PRESPO and IOCCG, 79–93.

  • Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442–7455. doi:10.1364/AO.38.007442.

    Article  CAS  Google Scholar 

  • Moreno, J.P. (2013). Evaluation of Secchi depth of remote sensing techniques in Deer Creek Reservoir, Utah. M.S Thesis, Department of Civil and Environmental Engineering, Brigham Young University, pp 52.

  • Nasiha, H. J., & Shanmugam, P. (2015). Estimating the bulk refractive index and related particulate properties of natural waters from remote-sensing data. IEEE Journal of Selected Topics In Applied Earth Observations and Remote Sensing, 8(11), 5324–5335. doi:10.1109/jstars.2015.2439581.

    Article  Google Scholar 

  • Ohde, T., & Siegel, H. (2003). Derivation of immersion factors for the hyperspectral TriOS radiance sensor. Journal of Optics A: Pure and Applied Optics, 5(2003), L12–L14.

    Article  Google Scholar 

  • Ouillon, S., Douillet, P., Petrenko, A., Neveux, J., Dupouy, C., Froidefond, J.-M., Andréfouët, S., & Muñoz-Caravaca, A. (2008). Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors, 8(7), 4165–4185. doi:10.3390/s8074165.

    Article  CAS  Google Scholar 

  • Pegau, W. S., Gray, D., & Zaneveld, J. R. V. (1997). Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Applied Optics, 36(24), 6035–6046. doi:10.1364/ao.36.006035.

    Article  CAS  Google Scholar 

  • Pegau, W. S., & Zaneveld, J. R. V. (1993). Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography, 38(1), 188–192. doi:10.4319/lo.1993.38.1.0188.

    Article  CAS  Google Scholar 

  • Platt, T., & Sathyendranath, S. (1988). Oceanic primary production: estimation by remote sensing at local and regional scales. Science, 241, 1613–1620.

    Article  CAS  Google Scholar 

  • Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied optics, 36(33), 8710–8723.

    CAS  Google Scholar 

  • Preisendorfer, R. W. (1986). Secchi disk science: visual optics of natural waters. Limnology and Oceanography, 3(5), 909–926. doi:10.4319/lo.1986.31.5.0909.

    Article  Google Scholar 

  • Reinart, A., Herlevi, A., Arst, H., & Sipelgas, L. (2003). Preliminary optical classification of lakes and coastal waters in Estonia and south Finland. Journal of Sea Research, 49(4), 357–366.

    Article  Google Scholar 

  • Sakshaug, E., Bricaud, A., Dandonneau, Y., Falkowski, P. G., Kiefer, D. A., Legendre, L., Morel, A., Parslow, J., & Takahashi, M. (1997). Parameters of photosynthesis: definitions, theory and interpretation of results. Journal of Plankton Research, 19(11), 1637–1670.

    Article  CAS  Google Scholar 

  • Sanil Kumar, V., Pathak, K. C., Pednekar, P., Raju, N. S. N., & Gowthaman, R. (2006). Coastal processes along the Indian coastline. Current Science, 91(4), 530–536.

    Google Scholar 

  • Saulquin, B., Hamdi, A., Gohin, F., Populus, J., Mangin, A., & d’Andon, O. F. (2013). Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sensing of Environment, 128, 224–233.

  • Selvaraj, K., Mohan, V. R., Jonathan, M. P., & Srinivasalu, S. (2005). Modification of a coastal environment: Vedaranniyam wetland, southeast coast of India. Journal of the Geological Society of India, 66(5), 535–538.

    Google Scholar 

  • Shanmugam, P. (2011). A new bio - optical algorithm for the remote sensing of algal blooms in complex ocean waters. Journal of Geophysical Research, 116(C4), 1–12. doi:10.1029/2010JC006796.

    Article  Google Scholar 

  • Siegel, D.A., & Dickey, T.D. (1988). Characterization of downwelling spectral irradiance fluctuations. Proceedings of the 9th Conference of Ocean Optics. (Orlando, FL, USA, SPIE), pp. 67–74.

  • Simon, A., & Shanmugam, P. (2013). A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements. Optics Express, 21(24), 30082–30106. doi:10.1364/oe.21.030082.

    Article  Google Scholar 

  • Simon, A., & Shanmugam, P. (2016). Estimation of the spectral diffuse attenuation coefficient of downwelling irradiance in inland and coastal waters from hyperspectral remote sensing data: Validation with experimental data. International Journal of Applied Earth Observation and Geoinformation, 49(2016), 117–125. doi:10.1016/j.jag.2016.02.003.

    Article  Google Scholar 

  • Singh, R. K., & Shanmugam, P. (2014). A novel method for estimation of aerosol radiance and its extrapolation in the atmospheric correction of satellite data over optically complex oceanic waters. Remote Sensing of Environment, 142(2014), 188–206. doi:10.1016/j.rse.2013.12.001.

    Article  Google Scholar 

  • Smith, D. G. (2001). A protocol for standardizing Secchi disk measurements, including use of a viewer box. Lake and Reservoir Management, 17(2), 90–96.

    Article  Google Scholar 

  • Steel, E. A., & Neuhausser, S. (2002). Comparison of methods for measuring visual water clarity. Journal of North American Benthological Society, 21(2), 326–335. doi:10.2307/1468419.

    Article  Google Scholar 

  • Stock, A. (2015). Satellite mapping of Baltic Sea Secchi depth with multiple regression models. International Journal of Applied Earth Observation and Geoinformation, 40(2015), 55–64. doi:10.1016/j.jag.2015.04.002.

    Article  Google Scholar 

  • Suresh, T., Naik, P., Bandishte, M., Desa, E., Mascaranahas, A., & Matondkar, S.G.P. (2006). Secchi depth analysis using bio-optical parameters measured in the Arabian Sea. Asia-Pacific Remote Sensing Symposium, International Society for Optics and Photonics. pp. 64061Q–64061Q–10. doi:10.1117/12.696251.

  • Tapia González, F. U., Herrera-Silveira, J. A., & Aguirre-Macedo, M. L. (2008). Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuarine, Coastal and Shelf Science, 76(2), 418–430. doi:10.1016/j.ecss.2007.07.025.

    Article  Google Scholar 

  • Tiwari, S. P., & Shanmugam, P. (2014). A robust algorithm to determine diffuse attenuation coefficient of downwelling irradiance from satellite data in coastal oceanic waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1616–1622. doi:10.1109/jstars.2013.2282938.

    Article  Google Scholar 

  • Trees, C.C., Bissett, P.W., Dierssen, H., Kohler, D.D.R., Moline, M.A., Mueller, J.L., Pieper, R.E., Twardowski, M.S., & Zaneveld, J.R.V. (2005). Monitoring water transparency and diver visibility in ports and harbors using aircraft hyperspectral remote sensing, Proceedings of Conference of Photonics for Port and Harbor Security. (Orlando, Florida, USA, SPIE), pp. 91–98. doi:10.1117/12.607554.

  • Tyler, J. E. (1966). Report on the the second meeting of the joint group of experts on photosynthetic radiant energy. UNESCO Technical Papers in Marine Science, 5, 1–11.

    Google Scholar 

  • Tyler, J. E. (1968). The Secchi disc. Limnology and Oceanography, 13(1), 1–6. doi:10.4319/lo.1968.13.1.0001.

    Article  Google Scholar 

  • Ucuncuoglu, E., Arli, O., & Eronat, A. H. (2006). Evaluating the impact of coastal land uses on water-clarity conditions from Landsat TM/ETM+ imagery: Candarli Bay, Aegean Sea. International Journal of Remote Sensing, 27(17), 3627–3643. doi:10.1080/01431160500500326.

    Article  Google Scholar 

  • Weeks, S., Werdell, P., Schaffelke, B., Canto, M., Lee, Z., Wilding, J., & Feldman, G. (2012). Satellite-derived photic depth on the great barrier reef: spatio-temporal patterns of water clarity. Remote Sensing, 4(12), 3781–3795. doi:10.3390/rs4123781.

    Article  Google Scholar 

  • WETLabs. (2010). Combination fluorometer and turbidity sensor ECO FLNTU user’s guide (p. 28). Philomath, OR: WETLabs Inc..

    Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1979). Limnological analyses. Philadelphia, Pa: W. B. Saunders Co..

    Google Scholar 

  • Zaneveld, J.R.V, & Kitchen, J.C. (1994). The scattering error correction of reflecting-tube absorption meters, Proceedings of Ocean Optics XII, International Society for Optics and Photonics, pp. 44–55.

  • Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2003). Empirical algorithms for Secchi disk depth using optical and microwave remote sensing data from the Gulf of Finland and the Archipelago Sea. Boreal Environmment Research, 8(3), 251–261.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Science and Technology (OEC/16-17/130/DSTX/PSHA) under the HSRS program and the Indian Institute of Technology Madras through the MHRD fellowship. We would like to extend our thanks to D. Rajshekhar, The Head, Vessel Management Cell (VMC), and the Director of National Institute of Ocean Technology (NIOT), for providing the Coastal research vessels (CRV Sagar Paschimi and CRV Sagar Purvi) to IIT Madras for carrying out various underwater light field measurements during the cruises and developing the bio-optical models. We gratefully acknowledge the contributors and scientists who contributed to NOMAD and the Ocean Biology Processing Group of NASA for the distribution of the NOMAD in situ data and the support of the SeaDAS 7.2 Software. We sincerely thank the two anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshreshtha, A., Shanmugam, P. Estimation of underwater visibility in coastal and inland waters using remote sensing data. Environ Monit Assess 189, 199 (2017). https://doi.org/10.1007/s10661-017-5905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5905-7

Keywords

Navigation