Skip to main content
Log in

Chemical composition and biomass of Coscinodiscus asteromphalus in Jiaozhou Bay, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The large diatom Coscinodiscus asteromphalus was separated from seawater in Jiaozhou Bay using a repeated precipitation method and then its chemical compositions of carbon (C), nitrogen (N), phosphorus (P), and silicon (Si) combined with chlorophyll a (Chl a) were examined for the first time for a natural population in this study. Results show that the contents of carbon, nitrogen, phosphorus, silicon, and Chl a in C. asteromphalus cells were 35,610.5, 9374.2, 352.4, 1105.5, and 1767.0 pg/cell, respectively, and the corresponding molar ratios of C/N, N/P, Si/P, and Si/N in C. asteromphalus cells were 4.5, 66.0, 2.7, and 0.07, respectively, which are different from the Redfield ratio. Additionally, their C/Chl a mass ratio was 23.2. High N/P ratio and low Si/P and Si/N ratios in C. asteromphalus cells were consistent with those in particulates of any size and seawater in the bay, reflecting an ecological response of phytoplankton to the nutrient structure of seawater, suggesting Si limitation to phytoplankton growth. The fact that C. asteromphalus spread all over the bay mainly in summer and autumn and the fact that Chl a content in C. asteromphalus cells could account for a maximum percentage of 78% of those in the water column suggest that the contribution of C. asteromphalus to phytoplankton biomass was significant in Jiaozhou Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baines, S. B., Twining, B. S., Vogt, S., Balch, W. M., Fisher, N. S., & Nelson, D. M. (2011). Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron. Deep-Sea Research II, 58, 512–523.

    Article  CAS  Google Scholar 

  • Beardall, J., Young, E., & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44–69.

    Article  CAS  Google Scholar 

  • Bienfang, P. K., & Harrison, P. J. (1984). Co-variation of sinking rate and cell quota among nutrient replete marine phytoplankton. Marine Ecology Progress Series, 14, 297–300.

    Article  CAS  Google Scholar 

  • Brzezinski, M. A. (1985). The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347–357.

    Article  CAS  Google Scholar 

  • Brzezinski, M. A., Olsonl, R. J., & Chisholm, S. W. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series, 67, 83–96.

    Article  CAS  Google Scholar 

  • Burkhardt, S., & Riebesell, U. (1997). CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series, 155, 67–76.

    Article  CAS  Google Scholar 

  • Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34(l), 205–213.

    Article  CAS  Google Scholar 

  • Eppley, R. W., Reid, F. M. H., & Strickland, J. D. H. (1970). The ecology of the plankton off La Jolla, California, in the period April through September 1967. Part 1. Estimates of phytoplankton crop size, growth rate and primary production. In J. D. H. Strickland (Ed.), Bull. Scripps Inst.Oceanogr., 17, 33–42.

  • Fraga, F., Ríos, A. F., Pérez, F. F., & Figueiras, F. G. (1998). Theoretical limits of oxygen:carbon and oxygen:nitrogen ratios during photosynthesis and mineralization of organic matter in the sea. Scientia Marina, 62(1–2), 161–168.

    CAS  Google Scholar 

  • Geider, R. J., & La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17.

    Article  Google Scholar 

  • Hagstrom, J. A., Graneli, E., Moreira, M. O. P., & Odebrecht, C. (2011). Domoic acid production and elemental composition of two Pseudo-nitzschia multiseries strains, from the NW and SW Atlantic Ocean, growing in phosphorus-or nitrogen-limited chemostat cultures. Journal of Plankton Research, 33(2), 297–308.

    Article  Google Scholar 

  • Harrison, P. J., Conway, H. L., Holmes, R. W., & Davis, C. O. (1977). Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetocero s debilis, Skeletonema costatum, and Thalassiosira gravida. Mar. Biology, 43, 19–31.

    Article  CAS  Google Scholar 

  • Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F., & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine Prochlorcoccus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 48, 1732–1743.

    Article  CAS  Google Scholar 

  • Koroleff, F. (1976). Determination of total phosphorus. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 123–125). Weinheim: Verlag Chemie.

    Google Scholar 

  • Kuninao, T. A. D. A., Santiwat, P. I. T. H. A. K. P. O. L., Kazuhiko, I. C. H. I. M. I., & Shigeru, M. O. N. T. A. N. I. (2000). Carbon, nitrogen, phosphorus, and chlorophyll a content of the large diatom, Coscinodiscus wailesii and its abundance in the Seto Inland Sea, Japan. Fisheries Science, 66, 509–514.

    Article  Google Scholar 

  • Lewin, J. C., & Guillard, R. R. (1963). Diatoms. Annual Review of Microbiology, 17, 373–414.

    Article  CAS  Google Scholar 

  • Leynaert, A., Tréguer, P., Quéguiner, B., & Morvan, J. (1991). The distribution of biogenic silica and the composition of particulate organic matter in the Weddell-Scotia Sea during spring 1988. Marine Chemistry, 35, 435–447.

    Article  CAS  Google Scholar 

  • Loebl, M., Cockshutt, A. M., Campbell, D. A., & Finkel, Z. V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55(5), 2150–2160.

    Article  CAS  Google Scholar 

  • Marchetti, A., & Harrison, P. J. (2007). Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnology and Oceanography: Mathods, 52(5), 2270–2284.

    Article  CAS  Google Scholar 

  • Menzel, D. W., & Ryther, J. H. (1964). The composition of particulate organic matter in the western North Atlantic. Limnology and Oceanography, 9, 179–186.

    Article  CAS  Google Scholar 

  • Moal, J., Martin-Jezequel, V., Harris, R. P., Samain, J.-F., & Poulet, S. A. (1987). Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanologica Acta, 10, 339–346.

    CAS  Google Scholar 

  • Mullin, M. M., Sloan, P. R., & Eppley, R. W. (1966). Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and Oceanography, 11, 307–311.

    Article  Google Scholar 

  • Parsons, T. R., Takahashi, M., & Hargrave, B. (1984). Biological oceanographic processes, 3rd edn. Oxford: Pergamon Press.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H., & Richards, F. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77). New York: John Wiley.

    Google Scholar 

  • Ríos, A. F., Fraga, F., Pérez, F. F., & Figueiras, F. G. (1998). Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Scientia Marina, 62(3), 257–271.

    Article  Google Scholar 

  • Sakshaug, E., Andresen, K., Myklestad, S., & Olsen, Y. (1983). Nutrient status of phytoplankton communities in Norwegian waters marine, brackish, and fresh as revealed by their chemical composition. Journal of Plankton Research, 5, 175–196.

    Article  CAS  Google Scholar 

  • Sakshaug, E., & Holm-Hansen, O. (1977). Chemical composition of Skeletonema costaturn (Grev.) Cleve and Pavlova (Mono-chrysis) luthen (Droop) Green as a function of nitrate-, phosphate-, and iron-limited growth. Journal of Experimental Marine Biology and Ecology, 29, l–34.

    Article  Google Scholar 

  • Segura-Noguera, M., Dolors, B., & Jose-Manuel, F. (2012). An improved energy-dispersive X-ray microanalysis method for analyzing simultaneously carbon, nitrogen, oxygen, phosphorus, sulfur, and other cation and anion concentrations in single natural marine microplankton cells. Limnology and Oceanography-Methods, 10, 666–680.

    Article  CAS  Google Scholar 

  • Segura-Noguera, M., Dolors, B., & Jose-Manuel, F. (2016). Taxonomic and environmental variability in the elemental composition and stoichiometry of individual dinoflagellate and diatom cells from the NW Mediterranean Sea. PLoSONE, 11(4), e0154050. doi:10.1371/journal. pone. 0154050.

    Article  Google Scholar 

  • Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.

    Article  CAS  Google Scholar 

  • Shen, Z. L., Liu, Q., Wu, Y. L., & Yao, Y. (2006). Nutrient structure of seawater and ecological responses in Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 69(1–2), 299–307.

    CAS  Google Scholar 

  • Shen, Z. L., Wu, Y. L., Liu, Q., & Yao, Y. (2008). Nutrient compositions of cultured Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay in China. Acta Oceanologica Sinica, 27(4), 147–155.

    CAS  Google Scholar 

  • Strathmann, R. R. (1967). Estimating organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12, 411–418.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. (1960). Measuring the production of marine phytoplankton. Bull. Fish. Rcs. Bd. Can. Bulletin of the Fisheries Research Board of Canada, 122, 172.

    Google Scholar 

  • Sun, J., Liu, D. Y., & Qian, S. B. (2000). Estimating biomass of phytoplankton in the Jiaozhou Bay I. Phytoplankton biomass estimated from cell volume or plasma volume. Acta Oceanologica Sinica, 19(2), 97–110.

    Google Scholar 

  • Taguchi, S. (1976). Relationships between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12, 185–189.

    Google Scholar 

  • Treguer, P., & Gueneley, S. (1988). Biogenic silica and particulate organic matter from the Indian sector of the Southern Ocean. Marine Chemistry, 23, 167–180.

    Article  CAS  Google Scholar 

  • Werner, D. (1971). The life cycle with sexual phase in the marine diatom Coscinodiscus asteromphalus. II. Surface-dependant differentiation during the vegetative celldiminutio. Archiv Fur Mikrobiologie, 80, 115–133.

    Article  CAS  Google Scholar 

  • Yang, H. M., & Liu, Q. (1995). A modified method for determination of particulate organic carbon (POC) and particulate nitrogen (PN) in seawater. In J. H. Dong & N. Z. Jiao (Eds.), Ecology studies in Jiaozhou Bay (pp. 53–56). Beijing: Science Press (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

This study was supported by NSFC No. 40776043 and Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Liang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, ZL., Shi, Q., Zheng, S. et al. Chemical composition and biomass of Coscinodiscus asteromphalus in Jiaozhou Bay, China. Environ Monit Assess 189, 94 (2017). https://doi.org/10.1007/s10661-017-5782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5782-0

Keywords

Navigation