Skip to main content

Advertisement

Log in

Isolation characterization and growth of locally isolated hydrocarbonoclastic marine bacteria (eastern Algerian coast)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Algerian coastline is being exposed to several types of pollution, including that of hydrocarbons. This environment rich in oil could be the source of proliferation of hydrocarbonoclastic bacteria. The objective of the study is to isolate and identify indigenous bacterial strains from marine waters of two ports in the eastern Algerian coast and to test their growth in the presence of hydrocarbons with and without biostimulation throughout the intake of nitrogen and phosphate. Results recorded the highest level of both total hydrocarbons and phosphates in the port of Annaba, followed by El-Kala station and then the control station, while that of total nitrogen was vice versa. Fifty-three bacterial strains were identified from which four were selected to perform the growth tests. Results showed that the growth and the biodegradation differ from one species to another. Thus, the strains tested (Halomonas venusta NY-8, Exiguobacterium aurantiacum NB11-3A, Vibrio alginolyticus Pb-WC11099, and Dietzia sp. CNJ898 PL04) seem very active, in which better growth was obtained with the last two strains during nitrogen and phosphate supplementation. Such strains are suggested to participate a lot in the biodegradation of oil at polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arulazhagan, P., Vasudevan, N., & Yeom, I. T. (2010). Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Tech., 7(4), 639–652.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Atlas, M. C. (1991). Biodegradation of oil and bioremediation of oil spills. Current Opinion in Biotechnology, 2, 440–443.

    Article  CAS  Google Scholar 

  • Bartha, R., & Atlas, R. M. (1977). The microbiology of aquatic oil spills. Advances in Applied Microbiology, 22, 225–266.

    Article  CAS  Google Scholar 

  • Batisson, I., Crouzet, O., Hoggan, P. B., Sancelme, M., Mangot, J. F., Mallet, C., & Bohatier, J. (2009). Isolation and characterization of mesotrione-degrading Bacillus sp. from soil. Environmental Pollution, 157, 1195–1201.

    Article  CAS  Google Scholar 

  • Bihari, Z., Szabo, Z., Szvetnika, A., Balazs, M., Bartos, P., Tolmacsov, P., Zambou, Z., & Kiss, T. (2010). Characterization of a novel log chain n-alkane degrading strain, Dietzia sp.E1. Z. Naturforsh.c, 65, 693–700.

    CAS  Google Scholar 

  • Borzenkov, I. A., Milekhina, E. I., Gotoeva, M. T., Rozanova, E. P., & Beliaev, S. S. (2006). The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, western Siberia, and Vietnam. Microbiology, 75, 82–89.

    Article  CAS  Google Scholar 

  • Cappello, S., Caruso, G., Zampino, D., Monticelli, L. S., Maimone, G., Denaro, R., Tripodo, B., Troussellier, M., Yakimov, M. M., & Giuliano, L. (2007). Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. Journal of Applied Microbiology, 102(1), 184–194.

    Article  CAS  Google Scholar 

  • Cappello, S., Genovese, M., Della Torre, C., Crisari, A., Hassanshahian, M., Santisi, S., Calogero, R., & Yakimov, M. M. (2012). Effect of bioemulsificant exopolysaccharide EPS 2003 on microbial community dynamics during assays of oil spill bioremediation: a microcosm study. Marine Pollution Bulletin, 64(12), 2820–2828.

    Article  CAS  Google Scholar 

  • Colquhoun, J. A., Mexson, J., Goodfellow, M., Ward, A. C., Horikoshi, K., & Bull, A. T. (1998). Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie Van Leeuwenhoek, 74, 27–40.

    Article  CAS  Google Scholar 

  • Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 1–13.

  • Dastgheib, S. M. M., Amoozegar, M. A., Khajeh, K., Shavandi, M., & Ventosa, A. (2012). Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Applied Microbiology and Biotechnology, 95, 789–798.

    Article  CAS  Google Scholar 

  • Dobson, S. J., & Franzmann, P. D. (1996). Unification of the genera Deleya, Halomonas, and Halovibrio and the species Paracoccus halodenitrificus into a single genus Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. International Journal of Systematic Bacteriology, 46, 550–558.

    Article  CAS  Google Scholar 

  • Duckworth, A. W., Grant, S., Grant, W. D., Jones, B. E., & Meijer, D. (1998). Dietzia natronolimnaios sp. nov., a new member of the genus Dietzia isolated from an East African soda lake. Extremophile, 2, 359–366.

    Article  CAS  Google Scholar 

  • Franzmann, P. D., Wehmeyer, U., & Stackebrandt, E. (1988). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accomodate the genera Halomonas and Deleya. Systematic and Applied Microbiology., 11, 16–19.

    Article  Google Scholar 

  • Gabet, S. (2004). Remobilisation d’Hydrocarbures Aromatiques Polycycliques (HAP) présents dans les sols contaminés à l’aide d’un tensioactif d’origine biologique. Thèse de doctorat de l’université de Limoges, spécialité Chimie et Microbiologie de l’Eau, p. 177.

  • Gita, M., & Suparna, M. (2008a). Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Indian Journal of Biotechnology, 7, 295–306.

    Google Scholar 

  • Gita, M., & Suparna, M. (2008b). Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, 61, 240–250.

  • Gong, Y., Zhao, X., Cai, Z., O’Riely, S., Hao, X., & Zhao, D. (2013). A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin. doi:10.1016/j.marpolbul.2013.12.024.

    Google Scholar 

  • Grossart, H. P., Levold, F., Allgaier, M., Simon, M., & Brinkhoff, T. (2005). Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 7, 860–873.

    Article  CAS  Google Scholar 

  • Hand, D. J. & Taylor, C. C. (1987). Multivariate analysis of variance and repeated measures: a practical approach to behavioural scientists. Chapman & Hall (Ed), p. 340.

  • Hassanshahian, M., Imtiazi, G., & Cappello, S. (2012). Isolation and characterization of crude-oil-degraded bacateria of the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 64, 7–12.

    Article  CAS  Google Scholar 

  • Jain, R. K., Kapur, M., Labana, S., Lal, B., Sarma, P. M., Bhattacharya, D., & Thakur, I. S. (2005). Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Current Science, 89(1), 101–112.

    CAS  Google Scholar 

  • J.O.R.A.: Journal Officiel de la République Algérienne n° 26 (2006).

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-Hill (5 edn), p. 1396.

  • Leahy, J. G., & Colwell, R. (1990). Microbial degradation of hydrocarbons in the environment. Microbial Reviews, 54, 305–315.

    CAS  Google Scholar 

  • Liu, Y., Li, I., Wu, Y., Tian, W., Zhang, L., Xu, I., Shen, Q., & Shen, B. (2010). Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresource Technology, 101, 310–316.

    Article  CAS  Google Scholar 

  • Marchal, N., Bourdon, J.L., & Richard, C.L. (Eds.) (1982). Les milieux de culture pour l’isolement et l’identification biochimique des bactéries. Doin. 482 pp.

  • Marchal, R., Perret, S., Solano-Serena, F., & Vandecasteele, J. P. (2003). Gasoline and diesel oil biodegradation. Oil & Gas Science and Technology Review, IFP, 58(4), 441–448.

    Article  CAS  Google Scholar 

  • Mnif, S., Rojas, R., Miranda, C. D., Amaro, A. M., et al. (2009). Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval cultures of the Chilean scallop Argopecten purpuratus. Microbiol Ecology., 57, 129–139.

    Article  Google Scholar 

  • Mnif, S., Chamkha, M., Labat, M., & Sayadi, S. (2011). Simultaneous hydrocarbon biodegradation and biosurfactant production by oil field-selected bacteria. Journal of Applied Microbiology, 111, 525–536.

    Article  CAS  Google Scholar 

  • Molina, M., Gonzalez, N., Bautista, L., Sanz, R., Simarro, R., Sanchez, I., & Sanz, J. (2009). Isolation and genetic identification of PAH degrading bacteria from microbial consortium. Biodegradation, 20(6), 789–800.

    Article  CAS  Google Scholar 

  • Moxley, K., & Schmidt, S. (2010). Preliminary characterization of an estuarine, benzoate-utilizing Vibrio sp. isolated from Durban harbour, South Africa. In A. Mendez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (Vol. 2, pp. 1249–1254).

    Google Scholar 

  • Okamoto, T., Maruyama, A., Imura, S., Takeyama, H., & Naganuma, T. (2004). Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16 r RNA, gyrB and ect BC. Gene sequences. Systematic and Applied Microbiology, 27, 323–333.

    Article  CAS  Google Scholar 

  • Olajire, A. A., & Essien, J. P. (2014). Aerobic degradation of petroleum components by microbial consortia. Petroleum & Environmental Biotechnology., 5, 195. doi:10.4172/2157-7463.1000195.

    Google Scholar 

  • Perry, J. J., Staley, T. J., & Lory, S. (2004). Croissance des micro-organismes. In A. Sinauer (Ed.), Microbiologie, Inc, sous le titre Microbial Life ©2002, USA (p. 136).

    Google Scholar 

  • Raeiney, F. A., Klatte, S., Kroppenstedt, R. M., & Stackebrandt, E. (1995). Dietzia, new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. International Journal of Systematic and Evolutionary Microbiology, 45, 32–36.

    Google Scholar 

  • Rahman, K. S. M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2004). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85, 257–261.

    Article  Google Scholar 

  • Ratlege, C. (1978). Degradation of aliphatic hydrocarbons. In R. J. Atkinson (Ed.), Development in biodegradation of hydrocarbons (Vol. 1, pp. 1–46). London: Applied Sciences Publishers.

    Google Scholar 

  • Riis, V., Kleinsteuber, S., & Babel, W. (2003). Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Canadian Journal of Microbiology, 49, 713–772.

    Article  CAS  Google Scholar 

  • Rojas, R., Miranda, C. D., & Amaro, A. M. (2009). Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval culture of the Chilean scallop Argopecten purpuratus. Microbial Ecology, 57, 129–139.

    Article  Google Scholar 

  • Saitsou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Google Scholar 

  • Sauret, C. (2011). Ecologie des communautés bactériennes marines soumises à une pollution pétrolière. Influence des facteurs environnementaux, de la prédation et de la réccurence des pollutions. Thèse de Doctorat. Université Pierre et Marie Curie. Paris 6. p 167.

  • Simon-Colin, C., Raguénès, G., Cozien, J., Guezennec, J. G. (2008). Halomonas profundus sp. nov, a new PHA-producing bacterium isolated from deep-sea hydrothermal vent shrimp. Journal of Applied Microbiology, 104, 1425–1432.

  • Sivaraman, C., Ganguly, A., Nikolausz, M., & Mutnuri, S. (2011). Isolation of hydrocarbonoclastic bacteria from bilge oil contaminated water. International journal of Environmental Science and Technology, 8(3), 461–470.

  • Soltani, M. (2004). Distribution lipidique et voies métaboliques chez quatre bactéries Gram-négatives hydrocarbonoclastes variation en fonction de la source de carbone. Thèse de Doctorat, University of Pierre et Marie curie. Paris 6. p 284.

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030–11035.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution., 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Tantillo, G. M., Fontanarosa, M., Di Pinto, A., & Musti, M. (2004). Updated perspectives on emerging vibrios associated with human infections. Letters in Applied Microbiology., 39, 117–126.

    Article  CAS  Google Scholar 

  • Thompson, F. L., Lida, T., & Swings, J. (2004). Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68, 403–431.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., & Ward, O. P. (2001). Physical and metabolic interactions of Pseudomonas sp. strain ja 5-b45 and Rhodococcus sp. strain f9-79 during growth on crude oil and effect of chemical surfactant on them. Appl. Environ Mirobiol., 67(10), 4874–4879.

    Article  CAS  Google Scholar 

  • Von der Weid, I., Marques, J. M., Cunha, C. D., Lippi, R. K., Dos Santos, S. C., Rosado, A. S., Lins, U., & Seldin, L. (2007). Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Systematic and Applied Microbiology., 30, 331–333.

    Article  CAS  Google Scholar 

  • Wang, Y. N., Cai, H., Chi, C. Q., Lu, A. H., Lin, X. G., Jian, Z. F., et al. (2007). Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. International Journal of Systematic and Evolutionary Microbiology., 57, 1222–1226.

    Article  CAS  Google Scholar 

  • Wang, Z. F., Xiao, T., Pang, S., Liu, M., & Yue, H. (2009). Isolation and identification of bacteria associated with the surfaces of several algal spices. Chinese Journal of Oceanography and Limnology., 27, 487–492.

    Article  Google Scholar 

  • Xing Xang-Biao, W., Chang-Qiao, C., Yong, N., Yue-Qin, T., Yan, T., Gang, W., & Xiao-Lei, W. (2011). Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresource Technology., 102, 7755–7761.

    Article  Google Scholar 

  • Yumoto, L., Nakamura, A., Iwata, H., Kojima, K., Kusumoto, K., Nodasaka, Y., & Matsuyama, H. (2002). Dietzia psychralcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile that grows on hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 52, 85–90.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., & Xu, P. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource. Technol., 102, 4111–4116.

    Article  CAS  Google Scholar 

  • Zvyagintseva, I. S., Poglasova, M. N., Gotoeva, M. T., & Belyaev, S. S. (2001). Effect of the medium salinity on oil degradation by Nocardioform bacteria. Microbiology, 70, 652–656.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Branes.

Electronic supplementary material

ESM 1

(DOCX 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feknous, N., Branes, Z., Rouabhia, K. et al. Isolation characterization and growth of locally isolated hydrocarbonoclastic marine bacteria (eastern Algerian coast). Environ Monit Assess 189, 49 (2017). https://doi.org/10.1007/s10661-016-5758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5758-5

Keywords

Navigation