Skip to main content
Log in

Seasonal variations and source profile of n-alkanes in particulate matter (PM10) at a heavy traffic site, Delhi

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m3) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m3, along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m3) than during the summer season (56.3 ± 1.1 ng/m3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves, C. (2008). Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. Anais da Academia Brasileira de Ciências, 80, 21–82.

    Article  CAS  Google Scholar 

  • Balachandran, S., Meena, B. R., & Khillare, P. K. (2000). Particle size distribution and its elemental composition in the ambient air of Delhi. Environment International, 26, 49–54.

    Article  CAS  Google Scholar 

  • Banerjee, T., Singh, S. B., & Srivastava, R. K. (2011a). Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar India. Atmospheric Research, 99, 505–517.

    Article  CAS  Google Scholar 

  • Begum, B. A., Kim, E., Biswas, S. K., & Hopke, P. K. (2004). Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmospheric Environment, 38, 3025–3083.

    Article  CAS  Google Scholar 

  • Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica Cosmochimica Acta, 22, 2–15.

    Article  CAS  Google Scholar 

  • Brown, S. G., Herckes, P., Ashbaugh, L., Hannigan, M. P., Kreidenweis, S. M., & Collett Jr., J. L. (2002). Characterization of organic aerosol in Big Bend National Park, Texas. Atmospheric Environment, 36, 5807–5818.

    Article  CAS  Google Scholar 

  • Chelani, A. B., Gajghate, D. G., & Devotta, S. (2008). Source apportionment of PM10 in Mumbai, India using CMB model. Bulletin of Environmental Contamination and Toxicology, 81, 190–195.

    Article  CAS  Google Scholar 

  • Chowdhury, Z., Zheng, M., Schauer, J. J., Sheesley, R. J., Salmon, L. G., Cass, G. R., & Russell, A. G. (2007). Speciation of fine organic carbon particles and source apportionment of PM2.5 in Indian cities. Journal of Geophysical Research, 112, D15303.

    Article  Google Scholar 

  • CPCB, 2010. Air quality monitoring, emission inventory and source apportionment study for Indian cities. Central Pollution Control Board, February 2010.

  • Fu, P. Q., Kawamura, K., & Barrie, L. A. (2009a). Photochemical and other sources of organic compounds in the Canadian high Arctic aerosol pollution during winter-spring. Environmental Science & Technology, 43, 286–292.

    Article  CAS  Google Scholar 

  • Fu, P. Q., Kawamura, K., Pavuluri, C. M., Swaminathan, T., & Chen, J. (2010). Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmospheric Chemistry and Physics, 10, 2663–2689.

    Article  CAS  Google Scholar 

  • Gargava, P., Chow, J. C., Watson, J. G., & Lowenthal, D. H. (2014). Speciated PM10 emission inventory for Delhi, India. Aerosol and Air Quality Research, 14, 1515–1526.

    CAS  Google Scholar 

  • Gelencsér, A. (2004). Carbonaceous aerosol, atmospheric and oceanographic sciences library. Netherlands: Springer.

    Google Scholar 

  • Giri, B., Patel, K. S., Jaiswal, N. K., Sharma, S., Ambade, B., Wang, W., et al. (2013). Composition and sources of organic tracers in aerosol particles of industrial Central India. Atmospheric Research, 120–121, 312–324.

    Article  Google Scholar 

  • Gopalaswami, P., 2016. A study on effects of weather,vehicular traffic and other sources of particulate air pollution on the city of Delhi for the year 2015. Journal of Environment Pollution and Human Health. 4(2), 24–41.

  • Gupta, A. K., Karar, K., & Srivastava, A. (2007). Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of Hazardous Materials, 142, 279–287.

    Article  CAS  Google Scholar 

  • Guttikunda, S., & Calori, G. (2013). A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmospheric Environment, 67, 101–111.

    Article  CAS  Google Scholar 

  • Herlekar, M., Joseph, A. E., Kumar, R., & Gupta, I. (2012). Chemical speciation and source assignment of particulate (PM10) phase molecular markers in Mumbai. Aerosol and Air Quality Research, 12, 1247–1260.

    CAS  Google Scholar 

  • Kalaitzoglou, M., Terzi, E., & Samara, C. (2004). Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece. Atmospheric Environment, 38, 2545–2560.

    Article  CAS  Google Scholar 

  • Kar, S., Maity, J. P., Samal, A. C., & Santra, S. C. (2010). Metallic components of traffic induced urban aerosol, their spatial variation, and source apportionment. Environmental Monitoring and Assessment, 168, 561–574.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephahou, E. G., von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., N. Stratigakis, E., & Stephanou G. (1998). Iso and anteisoalkanes : specific tracers of environmental tabacoo smoke in indoor and outdoor particle-size distributed urban aerosols. Environmental Science and Technology, 10, 1369–1377.

  • Khillare, P. S., & Sarkar, S. (2012). Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmospheric Pollution Research, 3, 46–54.

    Article  CAS  Google Scholar 

  • Khillare, P. K., Balachandran, S., & Meena, B. R. (2004). Spatial and temporal variation of heavy metals in atmospheric aerosol in India. Environmental Monitoring and Assessment, 90, 1–21.

    Article  CAS  Google Scholar 

  • Kothai, P., Saradhi, I. V., Prathibha, P., Pandit, G. G., & Puranik, V. D. (2008). Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol and Air Quality Research, 8, 423–436.

    CAS  Google Scholar 

  • Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34, 2785–2790.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. The Science of the Total Environment, 407, 6196–6204.

    Article  CAS  Google Scholar 

  • Kumar, S., Aggarwal, S. G., Gupta, P. K., & Kawamura, K. (2015). Investigation of the tracers for plastic enriched waste burning aerosols. Atmospheric Environment, 108, 49–58.

    Article  CAS  Google Scholar 

  • Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35, 4245–4251.

    Article  CAS  Google Scholar 

  • Li, W., Peng, Y., & Bai, Z. (2010). Distribution and sources of n-alkanes in PM2.5 at urban, industrial and coastal sites in Tianjin, China. Journal of Environmental Sciences, 22(10), 1551–1557.

    Article  Google Scholar 

  • Pant, P., Shukla, A., Kohl, S. D., Chow, J. D., Watson, J. G., & Harrison, R. M. (2015). Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric Environment, 109, 178–189.

    Article  CAS  Google Scholar 

  • Penner, J. E., & Novakov, T. (1996). Carbonaceous particles in the atmosphere: a historical perspective to the fifth international conference on carbonaceous particles in the atmosphere. Journal of Geophysical Research, 101, 19373–19378.

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment, 43, 37–50.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., & Simoneit, B. R. T. (1993a). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309–1330.

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit B. R. T. (1993b). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environmental Science and Technology, 27, 636–651.

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993c). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental science and Technology, 27, 1892–1904.

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1996). Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations. Journal of Geophysical Research, 101, 19541–19549.

    Article  Google Scholar 

  • Sachdeva, K., & Attri, A. K. (2008). Morphological characterization of carbonaceous aggregates in soot and free fall aerosol samples. Atmospheric Environment, 42, 1025–1034.

    Article  CAS  Google Scholar 

  • Scalan, R. S., & Smith, J. E. (1970). An improved measure of the odd-to-even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica Cosmochimica Acta, 34, 611–620.

    Article  CAS  Google Scholar 

  • Sharma, S. K., Mandal, T. K., Jain, S., Saraswati, Sharma, A., & Saxena, M. (2016). Source apportionment of PM2.5 in Delhi, India using PMF model. Bulletin of Environmental Contamination and Toxicology., 97(2), 286–293.

    Article  CAS  Google Scholar 

  • Sharma, S. K., Mandal, T. K., Saxena, M., Rohtash, R., Sharma, A., & Gautam, R. (2014). Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Climate, 10(4), 656–670.

    Article  Google Scholar 

  • Sharma, M., Pandey, R., Maheshwari, M., Sengupta, B., Shukla, B. P., & Mishra, A. (2003a). Air quality index and its interpretation for the city of Delhi. Clean air. International Journal on Energy for a Clean Environment, 4, 83–98.

    Google Scholar 

  • Silverstein, R. M., & Webster, F. X. (2008). Spectrometric identification of organic compounds. New York: John Wiley and Sons Inc.

    Google Scholar 

  • Simoneit, B. R. T. (1989). Organic matter of the troposphere—V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. Journal of Atmospheric Chemistry, 8, 251–275.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., & Mazurek, M. A. (1982). Organic matter of the troposphere—II: natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment, 16(21), 39–59.

    Google Scholar 

  • Simoneit, B. R. T., Cardoso, J. N., & Robinson, N. (1991a). An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the South Atlantic from about 30–70°S. Chemosphere, 23, 447–465.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., Sheng, G., Chen, X., Fu, J., Zhang, J., & Xu, Y. (1991b). Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment, 25(A), 2111–2129.

    Article  Google Scholar 

  • Singh, D. P., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 45, 7653–7663.

    Article  CAS  Google Scholar 

  • Smith, D. J. T., & Harrison, R. M. (1996). Concentrations, trends and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K. atmosphere. Atmospheric Environment, 30, 2513–2525.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chronicles of Young Scientists, 2(1), 21–25.

    Article  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007). Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere, 68, 579–589.

    Article  CAS  Google Scholar 

  • Tiwari, S., Srivastava, A. K., Bisht, D. S., Bano, T., Singh, S., Behura, S., et al. (2009). Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. Journal of Atmospheric Chemistry, 62, 193–209.

    Article  Google Scholar 

  • Tong, Q., Gao, C. M., Feng, S. Y., Ruan, Y., & Wu, L. (1995). Study on vapor-phase and particulate n-alkanes in the Huhhot urban atmosphere. Acta Scientiae Circumstantiae, 15(1), 9–14.

    CAS  Google Scholar 

  • Trivedi, D. K., Ali, K., & Beig, G. (2014). Impact of meteorological parameters on the development of fine and coarse particles over Delhi. The Science of the Total Environment, 478, 175–183.

    Article  CAS  Google Scholar 

  • Villalobos, A. M., Amonov, M. O., Shafer, M. M., Devi, J. J., Gupta, T., Tripathi, S. N., et al. (2015). Source apportionment of carbonaceous fine particulate matter (PM2.5) in two contrasting cities across the Indo-Gangetic Plain. Atmospheric Pollution Research, 6, 398–405.

    Article  CAS  Google Scholar 

  • Wu, S. P., Tao, S., Zhang, Z. H., Lan, T., & Zuo, Q. (2005). Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmospheric Environment, 39, 7420–7432.

    Article  CAS  Google Scholar 

  • Yadav, S., Tandon, A., & Attri, A. K. (2013). Characterization of aerosol associated non polar organic compounds using TD-GC-MS: a four year study from Delhi, India. Journal of Hazardous Materials, 252–253, 29–44.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. A.K. Tyagi, Vice Chancellor, GGSIP University, Delhi and Prof. Nupur Prakash, Vice Chancellor, IGDTUW University, Delhi for their consistent encouragement. The authors also wish to thank Dr. Ajay Kumar, Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, Delhi for providing TD-GC/MS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranu Gadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gadi, R., Mandal, T. et al. Seasonal variations and source profile of n-alkanes in particulate matter (PM10) at a heavy traffic site, Delhi. Environ Monit Assess 189, 43 (2017). https://doi.org/10.1007/s10661-016-5756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5756-7

Keywords

Navigation