Skip to main content
Log in

Copepod carcasses in a tropical estuary during different hydrographical settings

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dead copepods (carcasses) are widespread in aquatic systems, but their scientific quantification is rare due to the difficulty in discriminating them from live ones. In this paper, we hypothesized that due to large spatial and temporal changes in hydrography in the Cochin backwaters, the percentage of copepod carcasses in the system could also change significantly on a spatial and temporal scale. In order to understand this aspect, we quantified the live and dead copepods in the Cochin backwaters under different hydrographical settings based on live and mortal staining technique. The most prominent temporal hydrographical feature during the study period was the large decline in salinity across the system, which was more pronounced downstream (15–20 units) and was caused by the large freshwater influx associated with the southwest monsoon. During the entire sampling period, copepod carcasses were pervasive all over the study area with large spatial and temporal variations in their percentage contribution (2.5–35.8 %) to the total community abundance. During all sampling, carcasses concentrated more in the downstream region, with maximum turbidity (16.5–35.8 %), than in the upstream region (2.5–14.5 %). The percentage of carcasses was the highest during the onset of the southwest monsoon (av. 23.64 ± 8.09 %), followed by the pre-southwest monsoon (av. 13.59 ± 6.72 %) and southwest monsoon (av. 8.75 ± 4.14 %). During the onset of the southwest monsoon, copepod carcasses in the downstream were contributed by ∼80 % high saline and ∼15 % low saline species, indicating a salinity shock-induced mortality. On the other hand, the cumulative effect of the long residence time of the Cochin backwaters and high partial predation rate of carnivores contributed to the high abundance of carcasses during the pre-monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya, T., Sarma, V. V. S. S., Sridevi, B., Venkataramana, V., Bharathi, M. D., Naidu, S. A., Kumar, B. S. K., Prasad, V. R., Bandyopadhyay, D., Reddy, N. P. C., & Kumar, M. D. (2012). Reduced river discharge intensifies phytoplankton bloom in Godavari estuary, India. Marine Chemistry, 132-133, 15–22.

    Article  CAS  Google Scholar 

  • Aksnes, D. L., Miller, C. B., Ohman, M. D., & Wood, S. N. (1997). Estimation techniques used in studies of copepod population dynamics—a review of underlying assumptions. Sarsia, 82, 279–296.

    Article  Google Scholar 

  • Balachandran, K., Reddy, G., Revichandran, C., Srinivas, K., Vijayan, P., & Thottam, T. (2008). Modelling of tidal hydrodynamics for a tropical ecosystem with implications for pollutant dispersion (Cohin estuary, Southwest India). Ocean Dynamics, 58, 259–273.

    Article  Google Scholar 

  • Bickel, S., & Tang, K. (2010). Microbial decomposition of proteins and lipids in copepod versus rotifer carcasses. Marine Biology, 157, 1613–1624.

    Article  CAS  Google Scholar 

  • Bickel, S. L., Tang, K. W., & Grossart, H. P. (2009). Use of aniline blue to distinguish live and dead crustacean zooplankton composition in freshwaters. Freshwater Biology, 54, 971–981.

    Article  Google Scholar 

  • Bickel, S. L., Malloy Hammond, J. D., & Tang, K. W. (2011). Boat-generated turbulence as a potential source of mortality among copepods. Journal of Experimental Marine Biology and Ecology, 401, 105–109.

    Article  Google Scholar 

  • Calliari, D., Christian Marc, A., Peter, T., Elena, G., & Peter, T. (2006). Salinity modulates the energy balance and reproductive success of co-occurring copepods Acartia tonsa and A. clausi in different ways. Marine Ecology Progress Series, 312, 177–188.

    Article  Google Scholar 

  • Calliari, D., Andersen Borg, M. C., Thor, P., Gorokhova, E., & Tiselius, P. (2008). Instantaneous salinity reductions affect the survival and feeding rates of the co-occurring copepods Acartia tonsa Dana and A. clausi Giesbrecht differently. Journal of Experimental Marine Biology and Ecology, 362, 18–25.

    Article  CAS  Google Scholar 

  • Cervetto, G., Gaudy, R., & Pagano, M. (1999). Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). Journal of Experimental Marine Biology and Ecology, 239, 33–45.

    Article  Google Scholar 

  • Chen, Q., Sheng, J., Lin, Q., Gao, Y., & Lv, J. (2006). Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture, 258, 575–582.

    Article  CAS  Google Scholar 

  • Chinnery, F. E., & Williams, J. A. (2004). The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Marine Biology, 145, 733–738.

    Google Scholar 

  • Conway, D.V.P., White, R.G., Hugues-Dit-Ciles, J., Gallienne, C.P., & Robins, D.B. (2003). Guide to the coastal and surface zooplankton of the south western Indian Ocean. Occasional publication no 15 Marine Biological Association of the United Kingdom, 354.

  • Dubovskaya, O., Gladyshev, M., Gubanov, V., & Makhutova, O. (2003). Study of non-consumptive mortality of Crustacean zooplankton in a Siberian reservoir using staining for live/dead sorting and sediment traps. Hydrobiologia, 504, 223–227.

    Article  Google Scholar 

  • Elliott, D. T., & Tang, K. W. (2009). Simple staining method for differentiating live and dead marine zooplankton in field samples. Limnology and Oceanography: Methods, 7, 585–594.

    Article  Google Scholar 

  • Elliott, D., & Tang, K. (2011a). Spatial and temporal distributions of live and dead copepods in the lower Chesapeake Bay (Virginia, USA). Estuaries and Coasts, 34, 1039–1048.

    Article  Google Scholar 

  • Elliott, D. T., & Tang, K. W. (2011b). Influence of carcass abundance on estimates of mortality and assessment of population dynamics in Acartia tonsa. Marine Ecology Progress Series, 427, 1–12.

    Article  Google Scholar 

  • Elliott, D. T., Harris, C. K., & Tang, K. W. (2010). Dead in the water: the fate of copepod carcasses in the York River estuary, Virginia. Limnology and Oceanography, 55, 1821–1834.

    Article  Google Scholar 

  • Frangoulis, C., Skliris, N., Lepoint, G., Elkalay, K., Goffart, A., Pinnegar, J. K., & Hecq, J. H. (2011). Importance of copepod carcasses versus faecal pellets in the upper water column of an oligotrophic area. Estuarine, Coastal and Shelf Science, 92, 456–463.

    Article  CAS  Google Scholar 

  • Genin, A., Gal, G., & Haury, L. (1995). Copepod carcasses in the ocean. II. Near coral reefs. Marine Ecology Progress Series, 123, 65–71.

    Article  Google Scholar 

  • Goswami, S. C., & Padmavati, G. (1996). Zooplankton production, composition and diversity in the coastal waters of Goa. Indian Journal of Marine science, 25, 91–97.

    Google Scholar 

  • Grasshoff, K. (1983). Methods of seawater analysis. In: K. Grasshoff, Ehrhardt, M., Kremling, K., (eds.) (pp. 89–224): Weinheim, Verlag Chemie.

  • Hansen, F. C., & Van Boekel, W. H. M. (1991). Grazing pressure of the calanoid copepod Temora longicornis on a Phaeocystis dominated spring bloom in a Dutch tidal inlet. Marine Ecology Progress Series, 78, 123–129.

    Article  Google Scholar 

  • Haralambidou, K., Sylaios, G., & Tsihrintzis, V. A. (2010). Salt-Wedge propagation in Mediterranean microtidal river mouth. Estuarine Coastal Shelf Science, 90, 174–184.

  • Haury, L., Fey, C., Gal, G., Hobday, A., & Genin, A. (1995). Copepod carcasses in the ocean. I. Over seamounts. Marine Ecology Progress Series, 123, 57–63.

    Article  Google Scholar 

  • Hirst, A. G., & Kiroboe, T. (2002). Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series, 230, 195–209.

    Article  Google Scholar 

  • Howarth, R. W., Swaney, D. P., Butler, T. J., & Marino, R. (2000). Rapid communication: climatic control on eutrophication of the Hudson River Estuary. Ecosystems, 3, 210–215.

    Article  Google Scholar 

  • Hubareva, E., Svetlichny, L., Kideys, A., & Isinibilir, M. (2008). Fate of the black sea Acartia clausi and Acartia tonsa (Copepoda) penetrating into the Marmara Sea through the Bosphorus. Estuarine, Coastal and Shelf Science, 76, 131–140.

    Article  Google Scholar 

  • Isinibilir, M., Svetlichny, L., Hubareva, E., Yilmaz, I. N., Ustun, F., Belmonte, G., & Toklu-Alicli, B. (2011). Adaptability and vulnerability of zooplankton species in the adjacent regions of the Black and Marmara seas. Journal of Marine Systems, 84, 18–27.

    Article  Google Scholar 

  • Jagadeesan, L., Jyothibabu, R., Anjusha, A., Mohan, A. P., Madhu, N. V., Muraleedharan, K. R., & Sudheesh, K. (2013). Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. Progress in Oceanography, 110, 27–48.

    Article  Google Scholar 

  • Jyothibabu, R., & Mandhu, N.V. (2007). Zooplankton in the Mandovi and Zuari estuary. In: Mandovi and Zuari estuaries eds.(SR.Shyte, M.Dileep kumar and D.Shankar). 83–90.

  • Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., Martin, G. D., & Nair, K. K. C. (2006). Impact of large river influx on microzooplankton and its implications on the food web of tropical estuary (Cochin backwaters—India). Estuarine, Coastal Shelf Science, 69, 505–518.

    Article  Google Scholar 

  • Jyothibabu, R., Asha Devi, C. R., Madhu, N. V., Sabu, P., Jayalakshmy, K. V., Jacob, J., Habeebrehman, H., Prabhakaran, M. P., Balasubramanian, T., & Nair, K. K. C. (2008). The response of microzooplankton (20–200 mm) to coastal upwelling and summer stratification in the southeastern Arabian Sea. Continental Shelf Research, 28, 653–671.

    Article  Google Scholar 

  • Kaartvedt, S., & Aksnes, D. L. (1992). Does freshwater discharge cause mortality of fjord-living zooplankton? Estuarine, Coastal and Shelf Science, 34, 305–313.

    Article  CAS  Google Scholar 

  • Kasturirangan, L.R. (1963). A key for the identification of the more common planktonic Copepoda of the Indian coastal waters,Publication No.2. Indian National Committee on Oceanic Research, 1–87.

  • Kimmerer, W. J., & McKinnon, A. D. (1990). High mortality in a copepod population caused by a parasitic dinoflagellate. Marine Biology, 107, 449–452.

    Article  Google Scholar 

  • Kirillin, G., Grossart, H. P., & Tang, K. W. (2012). Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing. Limnology and Oceanography, 57, 881–894.

    Article  Google Scholar 

  • Leps, J., & Smilauer, P. S. (2003). Multivariate analysis of ecological data using CANOCA. Cambridge University Press, Cambridge, United Kingdom, p. 269.

  • Madhu, N. V., Jyothibabu, R., Balachandran, K. K., Honey, U. K., Martin, G. D., Vijay, J. G., Shiyas, C. A., Gupta, G. V. M., & Achuthankutty, C. T. (2007). Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters—India). Estuarine, Coastal and Shelf Science, 73, 54–64.

    Article  Google Scholar 

  • Madhu, N. V., Jyothibabu, R., & Balachandran, K. K. (2010). Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India. Environmental Monitoring and Assessment, 166, 521–528.

    Article  CAS  Google Scholar 

  • Madhupratap, M. (1979). Distribution, community structure and species succession of copepods from Cochin backwaters. Indian Journal of Marine Science, 8, 1–8.

    Google Scholar 

  • Madhupratap, M. (1980). Ecology of the coexisting copepod species in cochin backwaters. Mahasagar, 13, 45–52.

    Google Scholar 

  • Madhupratap, M. (1987). Status and strategy zooplankton of tropical Indian estuaries: a review. Bulletin of Plankton Society of Japan, 65–81.

  • Madhupratap, M., & Haridas, P. (1975). Omposition and variations in zooplankton abundance in the backwaters from Cochin to Alleppey. Indian Journal of Marine Science, 4, 77–85.

    Google Scholar 

  • Madhupratap, M., & Haridas, P. (1986). Epipelagic calanoid copepods of the Northern Indian Ocean. Oceanologia Acta, 9, 105–117.

    Google Scholar 

  • Madhupratap, M., & Haridas, P. (1990). Zooplankton, especially calanoid copepods, in the upper 1000 m of the south east Arabian Sea. Journal of Plankton Research, 12, 305–321.

    Article  Google Scholar 

  • Madhupratap, M., Sreekumaran Nair, S. R., Haridas, P., & Padmavati, G. (1990). Response of zooplankton to physical changes in the environment: coastal upwelling along the central west coast of India. Journal of Coastal Research, 6, 413–426.

    Google Scholar 

  • Madhupratap, M., Haridas, P., Ramaiah, N., & Achuthankutty, C. T. (1992). Zooplankton of the southwest coast of India: abundance, composition,temporal and spatial variability in 1987. In B. N. Desai (Ed.), Oceanography of the Indian Ocean (pp. 99–112). New Delhi: Oxford & IBH.

    Google Scholar 

  • Madhupratap, M., Gopalakrishnan, T. C., Haridas, P., Nair, K. K. C., Aravindakshan, P. N., Padmavati, G., & Paul, S. (1996). Lack of seasonal and geographic variation in mesozooplankton biomass in the Arabian Sea and its structure in the mixed layer. Current Science, 71, 863–868.

    Google Scholar 

  • Martin, G. D., Jyothibabu, R., Madhu, N. V., Balachandran, K. K., Nair, M., Muraleedharan, K. R., Arun, P. K., Haridevi, C. K., & Revichandran, C. (2013). Impact of eutrophication on the occurrence of Trichodesmium in the Cochin backwaters, the largest estuary along the west coast of India. Environmental Monitoring and Assessment, 185, 1237–1253.

    Article  CAS  Google Scholar 

  • Martinez, M., Espinosa, N., & Calliari, D. (2013). Incidence of dead copepods and factors associated with non-predatory mortality in the RÃo de la Plata estuary. Journal of Plankton Research, 36, 265–270.

    Article  Google Scholar 

  • McLusky, D. (1993). Marine and estuarine gradients “an overview. Netherland Journal of Aquatic Ecology, 27, 489–493.

    Article  Google Scholar 

  • Ohman, M. D., & Wood, S. N. (1995). The inevitability of mortality. ICES Journal of Marine Science: Journal du Conseil, 52, 517–522.

    Article  Google Scholar 

  • Postel, L., Fock, H., & Hagen, W. (2000). Biomass and abundance, ICES Zooplankton Methodology manual. In: Harris R.P., Wiebe. P.H., Leiz. J., Skjoldal et al. (eds.) Academic Press, 193–213.

  • Qasim, S.Z. (2003). Indian estuaries (Allied publication Pvt. Ltd. Heriedia Marg, Ballard estate, Mumbai). Pp. 259.

  • Revichandran, C., Srinivas, K., Muraleedharan, K. R., Rafeeq, M., Amaravayal, S., Vijayakumar, K., & Jayalakshmy, K. V. (2012). Environmental set-up and tidal propagation in a tropical estuary with dual connection to the sea (SW Coast of India). Environmental Earth Sciences, 66, 1031–1042.

    Article  Google Scholar 

  • Sewell, R. (1999). The copepoda of Indian seas (p. 407). Delhi: Biotech Books.

    Google Scholar 

  • Shivaprasad, A., Vinita, J., Revichandran, C., Reny, P. D., Deepak, M. P., Muraleedharan, K. R., & Naveen Kumar, K. R. (2013). Seasonal stratification and property distributions in a tropical estuary (Cochin estuary, west coast, India). Hydrology and Earth System Science, 17, 187–199.

    Article  Google Scholar 

  • Soetaert, K., & Herman, P. M. J. (1994). One foot in the grave: zooplankton drift into the Westerschelde estuary (the Netherlands). Marine Ecology Progress Series, 105, 19–29.

    Article  Google Scholar 

  • Sooria, P. M., Jyothibabu, R., Anjusha, A., Vineetha, G., Vinita, J., Lallu, K. R., Paul, M., & Jagadeesan, L. (2015). Plankton food web and its seasonal dynamics in a large monsoonal estuary (Cochin backwaters, India)—significance of mesohaline region. Environmental Monitoring and Assessment, 187(C7), 427 .1-22

    Article  CAS  Google Scholar 

  • Tang, K. W., Freund, C. S., & Schweitzer, C. L. (2006). Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes. Estuarine, Coastal and Shelf Science, 68, 499–508.

    Article  Google Scholar 

  • Tang, K. W., Bickel, S. L., Dziallas, C., & Grossart, H. P. (2009). Microbial activities accompanying decomposition of cladoceran and copepod carcasses under different environmental conditions. Aquatic Microbial Ecology, 57, 89–100.

    Article  Google Scholar 

  • Tang, K. W., Gladyshev, M. I., Dubovskaya, O. P., Kirillin, G., & Grossart, H. P. (2014). Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. Journal of Plankton Research, 36, 597–612.

    Article  CAS  Google Scholar 

  • Terazaki, M., & Wada, M. (1988). Occurrence of large numbers of carcasses of the large, grazing copepod Calanus cristatus from the Japan Sea. Marine Biology, 97, 177–183.

    Article  Google Scholar 

  • Thottathil, S. D., Balachandran, K. K., Gupta, G. V. M., Madhu, N. V., & Nair, S. (2008). Influence of allochthonous input on autotrophic heterotrophic switch-over in shallow waters of a tropical estuary (Cochin Estuary), India. Estuarine, Coastal and Shelf Science, 78, 551–562.

    Article  Google Scholar 

  • Vijith, V., Sundar, D., & Shetye, S. R. (2009). Time-dependence of salinity in monsoonal estuaries. Estuarine, Coastal and Shelf Science, 85, 601–608.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River: Prentice-Hall, Inc..

    Google Scholar 

Download references

Acknowledgments

The authors thank the Director, CSIR-National Institute of Oceanography (NIO), India, for facilities. The authors thank the Scientist-in-Charge, CSIR NIO RC Kochi for encouragement. The author L. Jagadeesan thanks CSIR for SRF funding. This is NIO contribution 5940.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jyothibabu.

Electronic supplementary material

ESM 1

(DOCX 498 kb)

ESM 2

(DOCX 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothibabu, R., Jagadeesan, L. & Lallu, K.R. Copepod carcasses in a tropical estuary during different hydrographical settings. Environ Monit Assess 188, 559 (2016). https://doi.org/10.1007/s10661-016-5572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5572-0

Keywords

Navigation