Skip to main content

Advertisement

Log in

Non-predatory mortality in Mediterranean coastal copepods

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Mortality affects the dynamics of zooplankton populations with important effects on trophic interactions and biogeochemical fluxes in marine environments, but is still one of the processes least investigated in the field. In the present study, the non-predatory mortality in copepod assemblages and species was investigated by applying the neutral red staining method to identify and quantify copepod carcasses throughout an annual cycle in a Mediterranean coastal site (station LTER-MC in the inner Gulf of Naples). Carcasses accounted on average for 10.3% (±9.7%) of total copepod abundance and were most abundant in spring, summer and autumn. Carcasses were represented predominantly by copepodites (78.9 ± 22.0%) and occurred more frequently and abundantly in calanoids than in other copepod orders, with interspecific differences in their abundance and temporal patterns. Using carcass abundances from field data and decomposition times from laboratory observations, we estimated non-predatory mortality rates of key calanoids that are common and abundant in Mediterranean coastal waters. Non-predatory mortality rates averaged 0.13 day−1 in Paracalanus parvus, 0.07 day−1 in Clausocalanus spp., 0.06 day−1 in Temora stylifera and 0.04 day−1 in Acartia clausi. Non-predatory mortality rates in these populations were not correlated with temperature, salinity or chlorophyll a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beşiktepe Ş, Tang KW, Mantha G (2015) Seasonal variations of abundance and live/dead compositions of copepods in Mersin Bay, northeastern Levantine Sea (eastern Mediterranean). Turk J Zool 39:494–506. doi:10.3906/zoo-1405-23

    Article  Google Scholar 

  • Bickel SL, Hammond JDM, Tang KW (2011) Boat-generated turbulence as a potential source of mortality among copepods. J Exp Mar Biol Ecol 401:105–109

    Article  Google Scholar 

  • Böttger-Schnack R (1995) Summer distribution of micro- and small mesozooplankton in the Red Sea and Gulf of Aden, with special reference to non-calanoid copepods. Mar Ecol Prog Ser 118:81–102

    Article  Google Scholar 

  • Böttger-Schnack R (1996) Vertical structure of small metazoan plankton, especially non-calanoid copepods. I. Deep Arabian Sea. J Plankton Res 18:1073–1101

    Article  Google Scholar 

  • Burns CW (1985) Fungal parasitism in a copepod population: the effects of Aphanomyces on the population dynamics of Boeckella dilatata Sars. J Plankton Res 7:201–205

    Article  Google Scholar 

  • Carlotti F, Giske J, Werner F (2000) Modelling zooplankton dynamics. In: Harris RP, Wiebe PH, Lenz J, Skjodal HR, Huntle M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 571–667

    Chapter  Google Scholar 

  • Carpenter EJ, Peck BB, Anderson SJ (1974) Survival of copepods passing through a nuclear power station on northeastern Long Island Sound, USA. Mar Biol 24:49–55

    Article  Google Scholar 

  • Ceballos S, Kiørboe T (2011) Senescence and sexual selection in a pelagic copepod. PLoS One 6(4):e18870. doi:10.1371/journal.pone.0018870

    Article  CAS  Google Scholar 

  • Crippen RW, Perrier JL (1974) The use of neutral red and Evans blue for live-dead determination of marine plankton (with comments on the use of rotenone for inhibition of grazing). Stain Technol 49:97–104

    Article  CAS  Google Scholar 

  • Daase M, Øystein V, Falk-Petersen S (2014) Non-consumptive mortality in copepods: occurrence of Calanus spp. carcasses in the Arctic Ocean during winter. J Plankton Res 36:129–144

    Article  Google Scholar 

  • D’Alelio D, Libralato S, Wyatt T, Ribera d’Alcalà M (2016) Ecological-network models link diversity, structure and function in the plankton food-web. Sci Rep 6:21806. doi:10.1038/srep21806

    Article  Google Scholar 

  • D’Alelio D, Mazzocchi MG, Montresor M, Sarno D, Zingone A, Di Capua I, Franzè G, Margiotta F, Saggiomo V, Ribera d’Alcalà M (2015) The green–blue swing: plasticity of plankton food-webs in response to coastal oceanographic dynamics. Mar Ecol 36:1155–1170

    Article  Google Scholar 

  • Delgado M, Alcaraz M (1999) Interactions between red tide microalgae and herbivorous zooplankton: the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). J Plankton Res 21:2361–2371

    Article  Google Scholar 

  • Di Capua I, Mazzocchi MG (2004) Population structure of the copepods Centropages typicus and Temora stylifera in different environmental conditions. ICES J Mar Sci 61:632–644

    Article  Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res 113:C06013. doi:10.1029/2006JC004051

    Google Scholar 

  • Dressel DM, Heinle DR, Grote MC (1972) Vital staining to sort dead and live copepods. Chesap Sci 13:156–159

    Article  Google Scholar 

  • Duffy MA, Hall SR, Tessier A et al (2005) Selective predators and their parasitized prey: are epidemics in zooplankton under top–down control? Limnol Oceanogr 50:412–420

    Article  Google Scholar 

  • Eiane K, Ohman MD (2004) Stage-specific mortality of Calanus finmarchicus, Pseudocalanus elongatus and Oithona similis on Fladen Ground, North Sea, during a spring bloom. Mar Ecol Prog Ser 268:183–193

    Article  Google Scholar 

  • Elliott DT, Tang KW (2009) Simple staining method for differentiating live and dead marine zooplankton in field samples. Limnol Oceanogr Methods 7:585–594

    Article  Google Scholar 

  • Elliott DT, Tang KW (2011a) Spatial and temporal distributions of live and dead copepods in the lower Chesapeake Bay (Virginia, USA). Estuar Coasts 34:1039–1048

    Article  Google Scholar 

  • Elliott DT, Tang KW (2011b) Influence of carcass abundance on estimates of mortality and assessment of population dynamics in Acartia tonsa. Mar Ecol Prog Ser 427:1–12

    Article  Google Scholar 

  • Elliott DT, Pierson JJ, Roman MR (2013) Copepods and hypoxia in Chesapeake Bay: abundance, vertical position and non-predatory mortality. J Plankton Res 35:1027–1034

    Article  CAS  Google Scholar 

  • Frangoulis C, Psarra S, Zervakis V, Meador T, Mara P, Gogou A, Zervoudaki S, Giannakourou A, Pitta P, Lagaria A, Krasakopoulou E, Siokou-Frangou I (2010) Connecting export fluxes to plankton food-web efficiency in the Black Sea waters in flowing into the Mediterranean Sea. J Plankton Res 32:1203–1216

    Article  Google Scholar 

  • Frangoulis C, Skliris N, Lepoint G, Elkalay K, Goffart A, Pinnegar JK, Hecq J-H (2011) Importance of copepod carcasses versus faecal pellets in the upper water column of an oligotrophic area. Estuar Coast Shelf Sci 92:456–463

    Article  CAS  Google Scholar 

  • Genin A, Gal G, Haury L (1995) Copepod carcasses in the ocean. II. Near coral reefs. Mar Ecol Prog Ser 123:65–71

    Article  Google Scholar 

  • Gravili D, Napolitano E, Pierini S (2001) Barotropic aspects of the dynamics of the Gulf of Naples (Tyrrhenian Sea). Cont Shelf Res 21:455–471

    Article  Google Scholar 

  • Hall LW, Alden RW (1997) A review of concurrent ambient water column and sediment toxicity testing in the Chesapeake Bay watershed: 1990–1994. Environ Toxicol Chem 16:1606–1617

    Article  CAS  Google Scholar 

  • Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209

    Article  Google Scholar 

  • Ivory JA, Tang KW, Takahashi K (2014) Use of neutral red in short-term sediment traps to distinguish between zooplankton swimmers and carcasses. Mar Ecol Prog Ser 505:107–117

    Article  Google Scholar 

  • Kimmel DG, Boicourt WC, Pierson JJ, Roman MR, Zhang X (2009) A comparison of the mesozooplankton response to hypoxia in Chesapeake Bay and the northern Gulf of Mexico using the biomass size spectrum. J Exp Mar Biol Ecol 381:S65–S73

    Article  Google Scholar 

  • Kimmel DG, Boicourt WC, Pierson JJ, Roman MR, Zhang X (2010) The vertical distribution and diel variability of mesozooplankton biomass, abundance and size in response to hypoxia in the northern Gulf of Mexico USA. J Plankton Res 32:1185–1202

    Article  Google Scholar 

  • Kimmerer WJ, McKinnon AD (1990) High mortality in a copepod population caused by a parasitic dinoflagellate. Mar Biol 107:449–452

    Article  Google Scholar 

  • Kirillin G, Grossart HP, Tang KW (2012) Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing. Limnol Oceanogr 57:881–894

    Article  Google Scholar 

  • Litvinyuk DA, Altukhov DA, Mukhanov VS et al (2011) Dynamics of live Copepoda in plankton of Sevastopol Bay and open coastal waters (the Black Sea) in 2010–2011. Mar Ecol J (in Russian) 10:56–65

    Google Scholar 

  • Martinez M, Espinosa N, Calliari D (2014) Incidence of dead copepods and factors associated with non-predatory mortality in the Río de la Plata estuary. J Plankton Res 36:265–270. doi:10.1093/plankt/fbt106

    Article  Google Scholar 

  • Mazzocchi MG, Ribera d’Alcalà M (1995) Recurrent patterns in zooplankton structure and succession in a variable coastal environment. ICES J Mar Sci 52:679–691

    Article  Google Scholar 

  • Mazzocchi MG, Buffoni G, Carotenuto Y, Pasquali S, Ribera d’Alcalà M (2006) Effects of food conditions on the development of the population of Temora stylifera: a modeling approach. J Mar Syst 62:71–84

    Article  Google Scholar 

  • Mazzocchi MG, Licandro P, Dubroca L, Di Capua I, Saggiomo V (2011) Zooplankton associations in a Mediterranean long-term time-series. J Plankton Res 33:1163–1181

    Article  Google Scholar 

  • Mazzocchi MG, Dubroca L, Garcia-Comas C, Di Capua I, Ribera d’Alcalà M (2012) Stability and resilience in coastal copepod assemblages: the case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog Oceanogr 97–100:135–151

    Article  Google Scholar 

  • Ohman MD (2012) Estimation of mortality for stage-structured zooplankton populations: what is to be done? J Mar Syst 93:4–10

    Article  Google Scholar 

  • Ohman MD, Hirche H-J (2001) Density-dependent mortality in an oceanic copepod population. Nature 412:638–641

    Article  CAS  Google Scholar 

  • Ohman MD, Wood SN (1995) The inevitability of mortality. ICES J Mar Sci 52:517–522

    Article  Google Scholar 

  • Ohtsuka S, Hora M, Suzaki T, Arikawa M, Omura G, Yamada K (2004) Morphology and host-specificity of the apostome ciliate Vampyrophrya pelagica infecting pelagic copepods in the Seto Inland Sea, Japan. Mar Ecol Prog Ser 282:129–142

    Article  Google Scholar 

  • Peralba À, Mazzocchi MG (2004) Vertical and seasonal distribution of eight Clausocalanus species (Copepoda: Calanoida) in oligotrophic waters. ICES J Mar Sci 61:645–653. doi:10.1016/j.icesjms.2004.03.019

    Article  Google Scholar 

  • Peralba À, Mazzocchi MG, Harris RP (2016) Niche separation and reproduction of Clausocalanus species (Copepoda, Calanoida) in the Atlantic Ocean. Prog Oceanogr. doi:10.1016/j.pocean.2016.08.002

    Google Scholar 

  • Pierini S, Simioli A (1998) A wind-driven circulation model of the Tyrrhenian Sea area. J Mar Syst 18:161–178

    Article  Google Scholar 

  • Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68(Suppl. 1):65–83

    Article  Google Scholar 

  • Roman MR, Gauzens AL, Rhinehart WK, White JR (1993) Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnol Oceanogr 38:1603–1614

    Article  Google Scholar 

  • Saiz E, Calbet A, Griffell K, Guilherme J, Bersano F, Isari S, Solé M, Peters J, Alcaraz M (2015) Ageing and caloric restriction in a marine planktonic copepod. Sci Rep 5:14962

    Article  CAS  Google Scholar 

  • Sampei M, Sasaki H, Hattori H, Forest A, Fortier L (2009) Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol Oceanogr 54:1894–1900

    Article  CAS  Google Scholar 

  • Sampei M, Sasaki H, Forest A, Fortier L (2012) A substantial export flux of particulate organic carbon linked to sinking dead copepods during winter 2007–2008 in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean). Limnol Oceanogr 57:90–96

    Article  CAS  Google Scholar 

  • Tang K, Elliott D (2014) Copepod carcasses: occurrence, fate and ecological importance. In: Seuront L (ed) Copepods: diversity, habitat and behaviour. Nova Science Publishers, pp 255–278

  • Tang KW, Freund CS, Schweitzer CL (2006) Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes. Estuar Coast Shelf Sci 68:499–508

    Article  Google Scholar 

  • Tang KW, Gladyshev MI, Dubovskaya OP, Kirillin G, Grossart HP (2014) Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. J Plankton Res 36:597–612. doi:10.1093/plankt/fbu014

    Article  CAS  Google Scholar 

  • Tsuda A (1994) Starvation tolerance of a planktonic marine copepod Pseudocalanus newmani frost. J Exp Mar Biol Ecol 181:81–89

    Article  Google Scholar 

  • Weikert H (1977) Copepod carcasses in the upwelling region south of Cap Blanc, N.W. Africa. Mar Biol 42:351–355

    Article  Google Scholar 

  • Weikert H (1982) The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II Deep, central Red Sea. Mar Ecol Prog Ser 8:129–143

    Article  Google Scholar 

  • Wheeler EH (1967) Copepod detritus in the deep sea. Limnol Oceanogr 12:697–701

    Article  Google Scholar 

  • Yanez S, Hidalgo P, Escribano R (2012) Natural mortality of Paracalanus indicus (Copepoda: Calanoida) in coastal upwelling areas associated with oxygen minimum zone in the Humboldt current system: implications for the passive carbon flux. Rev Biol Mar Oceanogr 47:295–310

    Article  Google Scholar 

  • Zetsche E-M, Meysman FJR (2012) Dead or alive? Viability assessment of micro- and mesoplankton. J Plankton Res 34:493–509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Corato for help during the staining method assessment, F. Tramontano and G. Zazo for sampling at station LTER-MC and the crew of the R/V “Vettoria” for assistance during the work at sea. G. Luongo contributed to the laboratory experiments on carcass decomposition. The SZN Monitoring and Environmental Data Unit provided the environmental data. We thank G. Boxshall and M. Uttieri for useful discussions and the four anonymous reviewers for their constructive criticisms and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iole Di Capua.

Ethics declarations

Funding

This study was supported by the Flagship project RITMARE (Ricerca ITaliana per il MARE, Italian Research for the Sea).

Conflict of interest

The authors have declared that no competing interests exist.

Research involving human or animal participants

Copepods are neither endangered nor protected species, they are not included in the list of human food resource, hence no specific permissions are required to collect copepods in Italy. The LTER-MC is a long term monitoring station. The Stazione Zoologica Anton Dohrn carries out regular sampling at this station since January 1984. No permissions are needed to sample at the LTER-MC station for employees of the Stazione Zoologica. Data collected at the LTER-MC are weekly updated on the following website http://szn.macisteweb.it.

Additional information

Responsible Editor: X. Irigoien.

Reviewed by D. L. Calliari and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Capua, I., Mazzocchi, M.G. Non-predatory mortality in Mediterranean coastal copepods. Mar Biol 164, 198 (2017). https://doi.org/10.1007/s00227-017-3212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3212-z

Navigation