Skip to main content
Log in

Investigation of temporal change in glacial extent of Chitral watershed using Landsat data: a critique

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Himalayan glaciers are showing consistent signs of recession similar to glaciers elsewhere in the world with the exception of slight mass gain or stability in Karakoram. Deficient knowledge regarding the processes controlling the glacier dynamics together with remoteness, rugged terrain, insufficient in situ measurements, unsuitable datasets, and scanty network of meteorological stations has always been a big challenge in projecting future glacier dynamics in the region. Here, we present a number of scientific concerns regarding the appropriateness of data sets and methods adopted by a study carried out by Naeem et al. (2016), published in the journal of Environmental Monitoring and Assessment to investigate and project glacier dynamics in Chitral watershed using Landsat data. The use of predominantly snow and cloud covered satellite images especially for 2006 and 2007 strongly questions the glacier fluctuation estimates put forth by the authors. The inferences from existing scientific literature suggesting robustness of semi-automatic methods for glacier mapping challenge the use of unsupervised classification approach for delineating glacier extents as adopted in Naeem et al. (2016). Considering the scientific concerns and loopholes in the study by Naeem et al. (2016), the glacier fluctuations in Chitral watershed need to be reassessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355(1), 148–163.

    Article  Google Scholar 

  • Bajracharya, S. R., & Shrestha, B. (2011). The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (Kathmandu:ICIMOD). ISBN:9789291152155

  • Bajracharya, S. R., Maharjan, S. B., & Shrestha, F. (2014a). The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Annals of Glaciology, 55(66), 159–166.

    Article  Google Scholar 

  • Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Bajracharya, O. R. & Baidya, S. (2014b) Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data (pp. 88). International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal.

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338.

  • Bhambri, R., & Bolch, T. (2009). Glacier mapping: a review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672–704.

  • Bhutiyani, M. R. (2015). Climate Change in the Northwestern Himalayas. In Dynamics of Climate Change and Water Resources of Northwestern Himalaya (pp. 85–96). Springer International Publishing

  • Bishop, M., John, F. S., Ghazanfar, A., Andrew, B. G. B., Umesh, K. H., Rakhshan, R., Mehmet, A. S., & Brandon, J. W. (2014). Remote sensing of glaciers in Afghanistan and Pakistan. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kääb, & B. Raup (Eds.), Global land ice measurements from space (pp. 509–545). Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Khan, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    Article  CAS  Google Scholar 

  • Cogley, J. G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52(59), 69–73.

    Article  Google Scholar 

  • Cogley, J. G., Kargel, J. S., Kaser, G., & Van der Veen, C. J. (2010). Tracking the source of glacier misinformation. Science, 327(5965), 522.

    Article  CAS  Google Scholar 

  • Dar, R. A., Rashid, I., Romshoo, S. A., & Marazi, A. (2014). Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environmental Monitoring and Assessment, 186(4), 2549–2562.

    Article  CAS  Google Scholar 

  • Gardelle, J., Berthier, E., Arnaud, Y., & Kaab, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(6), 1885–1886.

    Article  Google Scholar 

  • Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Martin, J., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., & Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.

    Article  CAS  Google Scholar 

  • Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W., Yu, P., Liu, Q., & Jiang, Z. (2015). The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 61(226), 357–372.

    Article  Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P. H., Konz, M., Shrestha, A. B., & Bierkens, M. F. P. (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110(3–4), 721–736.

    Article  Google Scholar 

  • IPCC. (2007). Summary for Policymakers. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 7–22). Cambridge: Cambridge University Press.

  • Jóhannesson, T., Raymond, C., & Waddington, E. D. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355–369.

    Google Scholar 

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  Google Scholar 

  • Khan, A., Naz, B. S., & Bowling, L. C. (2015). Separating snow, clean and debris covered ice in the upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. Journal of Hydrology, 521, 46–64.

    Article  Google Scholar 

  • Li, J., & Sheng, Y. (2012). An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas. International Journal of Remote Sensing, 33(16), 5194–5213.

  • Li, H., Xu, C. Y., Beldring, S., Tallaksen, L. M., & Jain, S. K. (2015). Water resources under climate change in Himalayan basins. Water Resources Management, 1–17. doi:10.1007/s11269-015-1194-5.

  • Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in high Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587–592.

    Article  Google Scholar 

  • Ming, J., Xiao, C., Du, Z., & Yang, X. (2013). An overview of black carbon deposition in high Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55, 80–87.

    Article  CAS  Google Scholar 

  • Murtaza, K. O., & Romshoo, S. A. (2015). Recent glacier changes in the Kashmir Alpine Himalayas. India. Geocarto International. doi:10.1080/10106049.2015.1132482.

    Google Scholar 

  • Naeem, U. A., Shamim, M. A., Ejaz, N., Ur Rehman, H., Mustafa, U., Hashmi, H. N., & Ghumman, A. R. (2016). Investigation of temporal change in glacial extent of Chitral watershed using Landsat data. Environmental Monitoring and Assessment, 188(1), 1–13.

    Article  Google Scholar 

  • Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K., & Marinoni, A. (2013). Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B, 65, 19738. doi:10.3402/tellusb.v65i0.19738.

    Article  Google Scholar 

  • Nakawo, M., Yabuki, H., & Sakai, A. (1999). Characteristics of Khumbu glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology, 28(1), 118–122.

    Article  Google Scholar 

  • Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering, P., & Fujita, K. (2015). The GAM-DAM glacier inventory: a quality-controlled inventory of Asian glaciers. The Cryosphere, 9(3), 849–864.

    Article  Google Scholar 

  • Paul, F., Huggel, C., & Kääb, A. (2004). Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4), 510–518.

    Article  Google Scholar 

  • Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C. S. L., Raup, B., Rivera, A., & Zemp, M. (2010). Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119–126.

    Article  Google Scholar 

  • Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., & Winsvold, S. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63), 171–182.

    Article  Google Scholar 

  • Pelto, M. S., & Hedlund, C. (2001). Terminus behavior and response time of North Cascade glaciers, Washington, USA. Journal of Glaciology, 47(158), 497–506.

    Article  Google Scholar 

  • Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rast-ner, P., Raup, B. H., Rich, J., Sharp, M. J., & the Randolph Consortium (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.

    Article  Google Scholar 

  • Racoviteanu, A. E., Williams, M. W., & Barry, R. G. (2008). Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8(5), 3355–3383.

    Article  Google Scholar 

  • Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372–387.

    Article  Google Scholar 

  • Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., & Zaz, S. N. (2015). Implications of shrinking cryosphere under changing climate on the streamflows in the Lidder catchment in the upper Indus Basin, India. Arctic, Antarctic, and Alpine Research, 47(4), 627–644.

    Article  Google Scholar 

  • Sarikaya, M. A., Bishop, M. P., Shroder, J. F., & Olsenholler, J. A. (2012). Space-based observations of eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Letters, 3(1), 77–84.

    Article  Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11(1), 65–77.

    Article  Google Scholar 

  • Shukla, A., Arora, M. K., & Gupta, R. P. (2010). Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7), 1378–1387.

    Article  Google Scholar 

  • Wang, W., Xiang, Y., Gao, Y., Lu, A., & Yao, T. (2015). Rapid expansion of glacial lakes caused by climate and glacier retreat in the central Himalayas. Hydrological Processes, 29(6), 859–874.

    Article  Google Scholar 

  • Xu, Y., Ramanathan, V., & Washington, W. M. (2015). Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmospheric Chemistry and Physics Discussions, 15(13), 19079–19109.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to anonymous reviewers for their valuable comments and suggestions on the earlier version of the manuscript that greatly improved the content and structure of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, I., Abdullah, T. Investigation of temporal change in glacial extent of Chitral watershed using Landsat data: a critique. Environ Monit Assess 188, 546 (2016). https://doi.org/10.1007/s10661-016-5565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5565-z

Keywords

Navigation