Skip to main content
Log in

Baseline trace metals in water and sediment of the Baleh River—a tropical river in Sarawak, Malaysia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Quantitative indices are classically employed to evaluate the contamination status of metals with reference to the baseline concentrations. The baselines vary considerably across different geographical zones. It is imperative to determine the local geochemical baseline to evaluate the contamination status. No study has been done to establish the background concentrations in tropical rivers of this region. This paper reports the background concentrations of metals in water and sediment of the Baleh River, Sarawak, derived based on the statistical methods where the areas possibly disturbed are distinguished from the undisturbed area. The baseline levels of six elements in water determined were Al (0.34 mg/L), Fe (0.51 mg/L), Mn (0.12 mg/L), Cu (0.01 mg/L), Pb (0.03 mg/L), and Zn (0.05 mg/L). Arsenic and selenium were below the detection limit. For sediment, the background values were established according to statistical methods including (mean + 2σ), iterative 2σ, cumulative distribution frequency, interquartile, and calculation distribution function. The background values derived using the iterative 2σ algorithm and calculated distribution function were relatively lower. The baseline levels calculated were within the range reported in the literatures mainly from tropical and sub-tropical regions. The upper limits proposed for nine elements in sediment were Al (100,879 mg/kg), Cr (75.45 mg/kg), Cu (34.59 mg/kg), Fe (37,823 mg/kg), Mn (793 mg/kg), Ni (22.88 mg/kg), Pb (27.26 mg/kg), Zn (70.64 mg/kg), and Hg (0.33 mg/kg). Quantitative indices calculated suggest low risk of contamination at the Baleh River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alagarsamy, R., & Zhang, J. (2005). Comparative studies on trace metal geochemistry in Indian and Chinese rivers. Current Science, 89(2), 299–309.

    CAS  Google Scholar 

  • Aloupi, M., & Angelidis, M. O. (2001). Geochemistry of natural and anthropogenic metals in the coastal sediments of the island of Lesvos, Aegean Sea. Environmental Pollution, 113(2), 211–219.

    Article  CAS  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and waste water (20th ed.). D.C. Washington: American Public Health Association.

    Google Scholar 

  • Aprile, F. M., & Bouvy, M. (2010). Heavy metals in surface waters from a tropical river basin, Pernambuco state, northeastern Brazil. Acta Scientiarum. Biological Sciences, 32(4), 357–364.

    CAS  Google Scholar 

  • Borg, H., & Johanson, K. (1989). Metal fluxes to Swedish forest lake. Water, Air and Soil Pollution, 47(3), 427–440.

    Article  CAS  Google Scholar 

  • Boulton, A. J., Boyero, L., Covich, A. P., Dobson, M., Lake, S., & Pearson, R. (2008). Are tropical streams ecologically different from temperate streams. In D. Dudgeon (Ed.), Tropical stream ecology (pp. 257–284). Amsterdam: Academic.

    Chapter  Google Scholar 

  • Cardoso, A. G. A., Boaventura, G. R., Silva, E. V., & Brod, J. A. (2001). Metal distribution in sediments from the Ribeira Bay, Rio de Janeiro. Brazil. Journal of Brazilian Chemical Society, 12(6), 767–774.

    Article  CAS  Google Scholar 

  • Crommentuijn, T., Sijim, D., de Bruijn, J., van den Hoop, M., van Leeuwen, K., van de Plassche, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60(2), 121–143.

  • Cussen, D. I., & Hensman, C. E. (2011). Determination of mercury and other trace metals in hydrocarbon using the Anton-Paar high pressure Asher (HPA). Seattle: Frontier Geosciences Inc. (FGI).

    Google Scholar 

  • Datta, D. K., & Subramanian, V. (1998). Distribution and fraction of heavy metals in the surface sediments of the Ganges River basin. Journal of the Geological Society of India, 48(1), 271–279.

    Google Scholar 

  • Davaulter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 42(1), 9–18.

    Article  Google Scholar 

  • De Lima Rodrigues, A. S., Malafaia, G., Costa, A. T., & Junior, H. A. N. (2013). Background values for chemical elements in sediments of the Gualazo do Norte river basin, MG, Brazil. Revista de Ciencias Ambientais, 7(2), 15–32.

    Google Scholar 

  • Desaules, A. (2012). Critical evaluation of soil contamination assessment methods for trace metals. Science of the Total Environment, 426(1), 120–131.

    Article  CAS  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Science and Biotechnology, 12(4), 335–353.

    Article  CAS  Google Scholar 

  • Galuszka, A. (2007). A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52(5), 861–871.

    Article  Google Scholar 

  • Greif, A. & Klemm, W. (2010). Geogene Hintergrundbelastungen. Schriftenreihe, Heft 10/2010 (in German).

  • Guan, Q., Wang, L., Pan, B., Guan, W., Sun, X., & Cai, A. (2016). Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-inner Mongolian reaches, Yellow River, China. Chemosphere, 144, 29–42.

    Article  CAS  Google Scholar 

  • Hasan, S. J., Tanu, M. B., Haidar, M. I., Ahmed, T., & Rubel, A. K. A. (2015). Physico-chemical characteristics and accumulation of heavy metals in water and sediments of the river Dakatia, Bangladesh. International Journal of Fisheries and Aquatic Studies, 2(5), 300–304.

    Google Scholar 

  • Haydar, C. M., Nehma, N., Awad, S., Koubaissy, B., Fakih, M., Yaacoub, A., Toufaily, J., Villeras, F., & Hamieh, T. (2014). Assessing contamination level of heavy metals in the lake of Qaraaoun, Lebanon. Physics Procedia, 55, 285–290.

    Article  CAS  Google Scholar 

  • Hortellani, M. A., Sarkis, J. E. S., Menezzes, L. C. B., Bazante-Yamaguishi, R., Pereira, A. S. A., Garcia, P. F. G., Maruyama, L. S., & Genova de Castro, P. M. (2013). Assessment of metal concentration in the billings reservoir sediments, Sao Paulo state, southeastern Brazil. Journal of Brazilian Chemical Society, 24(1), 58–67.

    Article  CAS  Google Scholar 

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159.

    Article  CAS  Google Scholar 

  • Jha, P. K., Subramanian, V., Sitasawad, R., & Van Grieken, R. (1990). Heavy metals in sediments of the Yamuna River (a tributary of the Ganges. Science of the Total Environment, 95(6), 7–27.

    Article  CAS  Google Scholar 

  • Li, B., Wan, G. J., Jiang, C. Z., & Zeng, S. G. (1995). Concentration levels, change records and enrichment pattern of heavy metals in waters and sediments in both lake Dianchi and lake Erhai, Yunnan Province. Environmental Sciences, 16(2), 50–52.

    Google Scholar 

  • Luiz-Silva, W., Matos, R. H. R., Kristosch, G. C., & Machado, W. (2006). Spatial and seasonal variability of trace-element concentrations in sediments from the Santos-Cubatão estuarine system, São Paulo, Brazil. Quim Nova, 29(2), 256.

    Article  CAS  Google Scholar 

  • Mali, M., Dell’Anna, M. M., Mastrorilli, P., Daminani, L., Ungaro, N., Belviso, C., & Fiore, S. (2015). Are conventional statistical techniques exhaustive for defining metal background concentrations in harbor sediments? A case study: the coastal area of Bari (Southeast Italy. Chemosphere, 138, 708–717.

    Article  CAS  Google Scholar 

  • Martin, J., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7(3), 178–206.

    Article  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—can we calculate it? Environmental Geology, 39(9), 990–1000.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1991). Rivers and global elemental cycles. Current Content, 24, 10.

    Google Scholar 

  • Müller, G. (1979). Schwermetalle in den sediment des Rheins, Veranderungem Seit 1971. Umschau, 79, 778–783.

    Google Scholar 

  • Nakic, Z., Posavec, K., & Bacani, A. (2007). A visual basic spreadsheet macro for geochemical background analysis. Groundwater, 45(5), 642–647.

    Article  CAS  Google Scholar 

  • O’Hanlon, R. (1984). Into the heart of Borneo. New York: Vintage Books.

    Google Scholar 

  • Oste, L., Zwolsman, G. J. & Klein, J. (2011). Inventory and evaluation of methods to derive natural background concentrations of trace metals in surface water, and application of two methods in a case study. Deltares report 1206111.005, Utrecht.

  • Parkman, H. (2007). Critical review of metals environmental risk assessment guidance for metals (MERAG). Copenhagen: TemaNord, Nordic Council of Ministers.

    Book  Google Scholar 

  • Qi, S., Leipe, T., Ruekert, P., Di, Z., & Harff, J. (2010). Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River estuary, southern China. Journal of Marine System, 82(Supplement), S28–S42.

    Article  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background. Concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Roulet, M., Lucotte, M., Farella, N., Serique, G., Coelho, H., Passos, C. J. S., da Silva, E. D., de Andrade, P. S., Mergler, D., Guimaraes, J. R. D., & Amorim, M. (1999). Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air and Soil Pollution, 112(3), 297–313.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Borole, D. V., & Krishnaswami, S. (1979). Geochemistry and geochronology of sediments from bay of Bengal and equatorial Indian oceans. Proceeding of Indian academy. Science, 10(24), 131–154.

    Google Scholar 

  • Sibon, P. (2010). Logjam a man-made disaster. Borneo Post Online. Retrieved from http://www.apastyle.org/learn/faqs/cite-newspaper.aspx.

  • Singh, M., Muller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80(1), 1–17.

    Article  CAS  Google Scholar 

  • Subramanian, V., Sitasawad, R., Abbas, N., & Jha, P. K. (1987). Environmental geology of the Ganga River basin. Journal of the Geological Society of India, 30(5), 335–355.

    CAS  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis reading. Massachusetts: Addision-Wessley Publishing.

    Google Scholar 

  • Turekian, K. K. (1969). The oceans, streams and atmosphere. Berlin: Springer.

    Book  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distributions of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Vaithiynathan, P., Ramanathan, A. L., Subramanian, V. (1993). Transport and distribution of heavy metals in Cauvery River. Water Air Soil Pollution, 71, 13–28.

  • Vowotor, M. K., Hood, C. O., Sackey, S. S., Owusu, A., Tatchie, E., Nyarko, S., Osei, D. M., Mireku, K. K., Letsa, C. B., & Atiemo, S. M. (2014). An assessment of heavy metal pollution in sediments of a tropical lagoon: a case study of the Benya lagoon, Komenda Edina Eguafo Abrem municipality—Ghana. Journal of Health and Pollution, 4(6), 26–39.

    Article  Google Scholar 

  • Wei, C., & Wen, H. (2012). Geochemical baselines of heavy metals in the sediments of two large freshwater lakes in China: implications for contamination character and history. Environmental Geochemistry and Health, 34(6), 737–748.

    Article  CAS  Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Literaty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51(8), 633–642.

    Article  CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070.

    Article  CAS  Google Scholar 

  • Zhu, G. W., Qin, B. Q., & Gao, G. (2005). Accumulation characteristics of heavy metals in the sediments of lake Taihu, China. Journal of Lake Sciences, 17(2), 143–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sarawak Energy Berhad for funding this project (GL(F07)/SEB/1D/2013(15)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siong Fong Sim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, S.F., Chai, H.P., Nyanti, L. et al. Baseline trace metals in water and sediment of the Baleh River—a tropical river in Sarawak, Malaysia. Environ Monit Assess 188, 537 (2016). https://doi.org/10.1007/s10661-016-5553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5553-3

Keywords

Navigation