Skip to main content
Log in

The mismatch of bioaccumulated trace metals (Cu, Pb and Zn) in field and transplanted oysters (Saccostrea glomerata) to ambient surficial sediments and suspended particulate matter in a highly urbanised estuary (Sydney estuary, Australia)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A significant correlation between sedimentary metals, particularly the ‘bio-available’ fraction, and bioaccumulated metal concentrations in the native Sydney rock oyster (Saccostrea glomerata) tissues has been successfully demonstrated previously for Cu and Zn in a number of estuaries in New South Wales, Australia. However, this relationship has been difficult to establish in a highly modified estuary (Sydney estuary, Australia) where metal contamination is of greatest concern and where a significant relationship would be most useful for environmental monitoring. The use of the Sydney rock oyster as a biomonitoring tool for metal contamination was assessed in the present study by investigating relationships between metals attached to sediments and suspended particulate matter (SPM) to bioaccumulated concentrations in oyster tissues. Surficial sediments (both total and fine-fraction), SPM and wild oysters were collected over 3 years from three embayments (Chowder Bay, Mosman Bay and Iron Cove) with each embayment representing a different physiographic region of Sydney estuary. In addition, a transplant experiment of farmed oysters was conducted in the same embayments for 3 months. No relationship was observed between sediments or SPM metals (Cu, Pb and Zn) to tissue of wild oysters; however, significant relationship was observed against transplanted oysters. The mismatch between wild and farmed, transplanted oysters is perplexing and indicates that wild oysters are unsuitable to be used as a biomonitoring tool due to the involvement of unknown complex factors while transplanted oysters hold strong potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlard, R. D., & Lester, R. J. G. (1995). Development of a diagnostic test for Mikrocytos roughleyi, the aetiological agent of Australian winter mortality of the commercial rock oyster, Saccostrea commercialis (Iredale & Roughley). Journal of Fish Diseases, 18, 609–614. doi:10.1111/j.1365-2761.1995.tb00365.x.

    Article  Google Scholar 

  • ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra, ACT: Australian and New Zealand Environment and Conservation Council, and Agriculture and Resource Management Council of Australia and New Zealand.

  • Apeti, D. A., Robinson, L., & Johnson, E. (2005). Relationships between heavy metal concentrations in the American oyster (Crassostrea virginica) and metal levels in the water column and sediment in Apalachicola Bay, Florida. American Journal of Environmental Sciences, 1, 179–186. doi:10.3844/ajessp.2005.179.186.

    Article  CAS  Google Scholar 

  • Batley, G. E., Scammell, M. S., & Brockbank, C. I. (1992). The impact of the banning of tributyltin-based antifouling paints on the Sydney rock oyster, Saccostrea commercialis. Science of the Total Environment, 122, 301–314. doi:10.1016/0048-9697(92)90048-W.

    Article  CAS  Google Scholar 

  • Bayne, B. L. (2002). A physiological comparison between Pacific oysters Crassostrea gigas and Sydney Rock oysters Saccostrea glomerata: food, feeding and growth in a shared estuarine habitat. Marine Ecology Progress Series, 232, 163–178. doi:10.3354/meps232163.

    Article  Google Scholar 

  • Bayne, B. L., & Svensson, S. (2006). Seasonal variability in feeding behavior, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata (Gould). Journal of Experimental Marine Biology and Ecology, 332, 12–26. doi:10.1016/j.jembe.2005.10.019.

    Article  CAS  Google Scholar 

  • Birch, G. F. (2003). A test of normalisation methods for marine sediments, including a new post-extraction normalisation (PEN) technique. Hydrobiologia, 492, 5–13. doi:10.1023/A:1024844629087.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Apostolatos, C. (2013). Use of sedimentary metals to predict metal concentrations in black mussel (Mytilus galloprovincialis) tissue and risk to human health (Sydney estuary, Australia). Environmental Science and Pollution Research, 20, 5481–5491. doi:10.1007/s11356-013-1538-8.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Hogg, T. D. (2011). Sediment quality guidelines for copper and zinc for filter-feeding estuarine oysters? Environmental Pollution, 159, 108–115. doi:10.1016/j.envpol.2010.09.015.

    Article  CAS  Google Scholar 

  • Birch, G. F., & McCready, S. (2009). Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia). Science of the Total Environment, 407, 2820–2835. doi:10.1016/j.scitotenv.2008.12.051.

    Article  CAS  Google Scholar 

  • Birch, G. F., & O’Hea, L. (2007). The chemistry of suspended particulate material in a highly contaminated embayment of Port Jackson (Australia) under quiescent, high-wind and heavy-rainfall conditions. Environmental Geology, 53, 501–516. doi:10.1007/s00254-007-0662-5.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Taylor, S. E. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. The Science of the Total Environment, 227, 123–138. doi:10.1016/S0048-9697(99)00007-8.

    Article  CAS  Google Scholar 

  • Birch, G. F., & Taylor, S. E. (2002). Application of sediment quality guidelines in the assessment and management of contaminated surficial sediments in Port Jackson (Sydney Harbour), Australia. Environmental Management, 29, 860–870. doi:10.1007/s00267-001-2620-4.

    Article  Google Scholar 

  • Birch, G. F., Apostolatos, C., & Taylor, S. E. (2013a). A remarkable recovery in the Sydney rock oyster (Saccostrea glomerata) population in a highly urbanised estuary (Sydney estuary, Australia). Journal of Coastal Research, 29, 1009–1015. doi:10.2112/JCOASTRES-D-12-00197.1.

    Article  Google Scholar 

  • Birch, G. F., Chang, C.-H., Lee, J.-H., & Churchill, L. J. (2013b). The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney estuary, Australia). Science of the Total Envioronment, 454–455, 542–561. doi:10.1016/j.scitotenv.2013.02.072.

    Article  Google Scholar 

  • Birch, G. F., Melwani, A., Lee, J.-H., & Apostolatos, C. (2014). The discrepancy in concentration of metals (Cu, Pb and Zn) in oyster tissue (Saccostrea glomerata) and ambient bottom sediment (Sydney estuary, Australia). Marine Pollution Bulletin, 80, 263–274. doi:10.1016/j.marpolbul.2013.12.005.

    Article  CAS  Google Scholar 

  • Blackmore, G., & Wang, W.-X. (2002). Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal pre-exposure. Environmental Science and Technology, 36, 989–995. doi:10.1021/es0155534.

    Article  CAS  Google Scholar 

  • Bobrov, V. A., Phedorin, M. A., Leonova, G. A., & Kolmogorov, Y. P. (2005). SR XRF element analysis of sea plankton. Nuclear Instruments and Methods in Physics Research A, 543, 259–265. doi:10.1016/j.nima.2005.01.218.

    Article  CAS  Google Scholar 

  • Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., & Zhu, C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin, 56, 1519–1537. doi:10.1016/j.marpolbul.2008.07.005.

    Article  CAS  Google Scholar 

  • Boyden, C. R. (1974). Trace element content and body size in molluscs. Nature, 251, 311–314. doi:10.1038/251311a0.

    Article  CAS  Google Scholar 

  • Boyden, C. R. (1977). Effect of size upon metal content of shellfish. Journal of the Marine Biological Association of the United Kingdom, 57, 675–714. doi:10.1017/S002531540002511X.

    Article  CAS  Google Scholar 

  • Bryan, G. W., Langston, W. J., & Hummerstone, L. G. (1980). The use of biological indicators of heavy metal contamination in estuaries: with special reference to an assessment of the biological availability of metals in estuarine sediments from south-west Britain. Occasional Publications of the Marine Biological Association of the United Kingdom, 1, 1–73.

    Google Scholar 

  • Bryan, G. W., Langston, W. J., Hummerstone, L. G., & Burt, G. R. (1985). A guide to the assessment of heavy-metal contamination in estuaries. Occasional Publications of the Marine Biological Association of the United Kingdom, 4, 1–92.

    Google Scholar 

  • Butt, D., & Raftos, D. (2007). Immunosuppression in Sydney rock oysters (Saccostrea glomerata) and QX disease in the Hawkesbury River, Sydney. Marine and Freshwater Research, 58, 213–221. doi:10.1071/MF06080.

    Article  CAS  Google Scholar 

  • Byrne, P. A., & O’Halloran, J. (2001). The role of bivalve molluscs as tools in estuarine sediment toxicity testing: a review. Hydrobiologia, 465, 209–217. doi:10.1023/A:1014584607501.

    Article  CAS  Google Scholar 

  • Campana, O., Taylor, A. M., Blasco, J., Maher, W. A., & Simpson, S. L. (2015). The importance of kinetics of sub-cellular partitioning to the predictability of sub-lethal toxic effects of copper in two deposit feeding organisms. Environmental Science and Technology. doi:10.1021/es505005y.

    Google Scholar 

  • Casado-Martinez, M. C., Smith, B. D., Luoma, S. N., & Rainbow, P. S. (2010). Metal toxicity in a sediment-dwelling polychaete: threshold body concentrations or overwhelming accumulation rates? Environmental Pollution, 158, 3071–3076. doi:10.1016/j.envpol.2010.06.026.

    Article  Google Scholar 

  • Chan, K. W., Cheung, R. Y. H., Leung, S. F., & Wong, M. H. (1999). Depuration of metals from soft tissues of oysters (Crassostrea gigas) transplanted from a contaminated site to clean sites. Environmental Pollution, 105, 299–310. doi:10.1016/S0269-7491(99)00046-9.

    Article  CAS  Google Scholar 

  • Chariton, A. A., Roach, A. C., Simpson, S. L., & Batley, G. E. (2010). Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities. Marine and Freshwater Research, 61, 1109–1122.

    Article  CAS  Google Scholar 

  • Chong, K., & Wang, W.-X. (2001). Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environmental Pollution, 115, 107–121. doi:10.1016/S0269-7491(01)00087-2.

    Article  CAS  Google Scholar 

  • Dafforn, K. A., Simpson, S. L., Kelaher, B. P., Clark, G. F., Komyakova, V., Wong, C. K. C., & Johnston, E. L. (2012). The challenge of choosing environmental indicators of anthropogenic impacts in estuaries. Environmental Pollution, 163, 207–217. doi:10.1016/j.envpol.2011.12.029.

    Article  CAS  Google Scholar 

  • Decho, A. W., & Luoma, S. N. (1994). Humic and fulvic acids: sink or source in the availability of metals to the marine bivalves Macoma balthica and Potamocorbula amurensis? Marine Ecology Progress Series, 108, 133–145. doi:10.3354/meps108133.

    Article  CAS  Google Scholar 

  • Edge, K. J., Johnston, E. L., Roach, A. C., & Ringwood, A. H. (2012). Indicators of environmental stress: cellular biomarkers and reproductive responses in the Sydney rock oyster. Ecotoxicology, 21, 1415–1425. doi:10.1007/s10646-012-0895-2.

    Article  CAS  Google Scholar 

  • Edge, K. J., Dafforn, K. A., Simpson, S. L., Roach, A. C., & Johnston, E. L. (2014). A biomarker of contaminant exposure is effective in large scale assessment of ten estuaries. Chemosphere, 100, 16–26. doi:10.1016/j.chemosphere.2014.01.001.

    Article  CAS  Google Scholar 

  • Fan, W., & Wang, W.-X. (2001). Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam Ruditapes philippinarum. Environmental Toxicology and Chemistry, 20, 2309–2317. doi:10.1897/1551-5028(2001)020<2309:SGCOCC>2.0.CO;2.

    Article  CAS  Google Scholar 

  • FSANZ (2006) Australia New Zealand Food Standards Code. Canberra, ACT: Food Standards Australia New Zealand (FSANZ).

  • Gibson, C. P., & Wilson, S. W. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restriction. Marine Environmental Research, 55, 101–112. doi:10.1016/S0141-1136(02)00097-1.

    Article  CAS  Google Scholar 

  • Griscom, S. B., Fisher, N. S., & Lumoa, S. N. (2000). Geochemical influence on assimilation of sediment-bound metals in clams and mussels. Environmental Science and Technology, 34, 91–99. doi:10.1021/es981309+.

    Article  CAS  Google Scholar 

  • Hand, R. E., Nell, J. A., Smith, I. R., & Maguire, G. B. (1998). Studies on triploid oysters in Australia. XI. Survival of diploid and triploid Sydney rock oysters, Saccostrea commercialis (Iredale and Roughley) through outbreaks of winter mortality caused by Mikrocytos roughleyi infestation. Journal of Shellfish Research, 17, 1129–1135.

    Google Scholar 

  • Hand, R. E., Nell, J. A., & Thompson, P. A. (2004). Studies on triploid oysters in Australia: XIII. Performance of diploid and triploid Sydney rock oyster, Saccostrea glomerata (Gould, 1850), progeny from a third generation breeding line. Aquaculture, 233, 93–107. doi:10.1016/j.aquaculture.2003.09.017.

    Article  Google Scholar 

  • Hayes, W. J., Anderson, I. J., Gaffoor, M. Z., & Hurtado, J. (1998). Trace metals in oysters and sediments of Botany Bay, Sydney. Science of the Total Environment, 212, 39–47. doi:10.1016/S0048-9697(97)00330-6.

    Article  CAS  Google Scholar 

  • Hirose, K. (1994). Conditional stability constants of metal complexes of organic ligands in sea water: past and present, and a simple coordination chemistry model. Analytica Chimica Acta, 284, 621–634. doi:10.1016/0003-2670(94)85067-4.

    Article  Google Scholar 

  • Ke, C., & Wang, W.-X. (2001). Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquatic Toxicology, 56, 33–51. doi:10.1016/S0166-445X(01)00185-0.

    Article  CAS  Google Scholar 

  • Ke, C., & Wang, W.-X. (2002). Trace metal ingestion and assimilation by the green mussel Perna viridis in a phytoplankton and sediment mixture. Marine Biology, 140, 327–335. doi:10.1007/s002270100696.

    Article  CAS  Google Scholar 

  • Knauer, G. A., & Martin, J. H. (1973). Seasonal variations of cadmium, copper, manganese, lead, and zinc in water and phytoplankton in Monterey Bay, California. Limnology and Oceanography, 18, 597–604. doi:10.4319/lo.1973.18.4.0597.

    Article  CAS  Google Scholar 

  • Landner, L., & Reuther, R. (2004). Metals in society and in the environment (A critical review of current knowledge on fluxes, speciation, bioavailability and risk for adverse effects of copper, chromium, nickel and zinc (Vol. 8)). Dordrecht, Netherlands; London, United Kindgom: Springer Netherlands.

    Google Scholar 

  • Lee, J.-H., Birch, G. F., Cresswell, T., Johansen, M. P., Adams, M. S., & Simpson, S. L. (2015). Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): a biokinetic model for zinc. Aquatic Toxicology, 167, 46–54. doi:10.1016/j.aquatox.2015.07.020.

    Article  CAS  Google Scholar 

  • Liu, F., Rainbow, P. S., & Wang, W.-X. (2013). Inter-site differences of zinc susceptibility of the oyster Crassostrea hongkongensis. Aquatic Toxicology, 132–133, 26–33. doi:10.1016/j.aquatox.2013.01.022.

    Article  Google Scholar 

  • Luoma, S. N., & Davis, J. A. (1983). Requirements for modelling trace metal partitioning in oxidized estuarine sediments. Marine Chemistry, 12, 159–181. doi:10.1016/0304-4203(83)90078-6.

    Article  CAS  Google Scholar 

  • Luoma, S. N., Dagovitz, R., & Axtmann, E. (1990). Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: Suisan Bay/Delta in San Francisco Bay. Science of the Total Environment, 97–98, 685–712. doi:10.1016/0048-9697(90)90269-Z.

    Article  Google Scholar 

  • McCready, S., Slee, D., Birch, G. F., & Taylor, S. E. (2000). The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, 40, 999–1006. doi:10.1016/S0025-326X(00)00044-8.

    Article  CAS  Google Scholar 

  • McCready, S., Birch, G. F., & Long, E. R. (2006a). Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines. Environment International, 32, 455–465. doi:10.1016/j.envint.2005.10.006.

    Article  Google Scholar 

  • McCready, S., Birch, G. F., Long, E. R., Spyrakis, G., & Greely, C. R. (2006b). An evaluation of Australian sediment quality guidelines. Archives of Environmental Contamination and Toxicology, 50, 306–315. doi:10.1007/s00244-004-0233-7.

    Article  CAS  Google Scholar 

  • McCready, S., Birch, G. F., Long, E. L., Spyrakis, G., & Greely, C. R. (2006c). Predictive abilities of numerical sediment quality guidelines for Sydney Harbour, Australia and vicinity. Environment International, 32, 638–649. doi:10.1016/j.envint.2006.02.004.

    Article  CAS  Google Scholar 

  • Moffett, J. W. (1995). Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 42, 1273–1295. doi:10.1016/0967-0637(95)00060-J.

    Article  CAS  Google Scholar 

  • Mudge, S., Birch, G., & Matthai, C. (2003). The effect of grain size and element concentration in identifying contaminant sources. Environmental Forensics, 4, 305–312. doi:10.1080/714044374.

    Article  CAS  Google Scholar 

  • Nell, J. A., & Perkins, B. (2006). Evaluation of the progeny of third generation Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding lines for resistance to QX disease Marteilia sydneyi and winter mortality Bonamia roughleyi. Aquaculture Research, 37, 693–700. doi:10.1111/j.1365-2109.2006.01482.x.

    Article  Google Scholar 

  • Nell, J. A., Smith, I. R., & McPhee, C. C. (2000). The Sydney rock oyster Saccostrea glomerata (Gould 1850) breeding programme: progress and goals. Aquaculture Research, 31, 45–49. doi:10.1046/j.1365-2109.2000.00387.x.

    Article  Google Scholar 

  • O’Connor, W. A., & Newman, L. J. (2001). Halotolerance of the oyster predator, Imogine mcgrathi, a stylochid flatworm from Port Stephens, New South Wales, Australia. Hydrobiologia, 459, 157–163. doi:10.1023/A:1012525015850.

    Article  Google Scholar 

  • Ogburn, D. M., White, I., & McPhee, D. P. (2007). The disappearance of oyster reefs from eastern Australian estuaries—impact of colonial settlement or mudworm invasion? Coastal Management, 35, 271–287. doi:10.1080/08920750601169618.

    Article  Google Scholar 

  • Phillips, D. J. H. (1980). Quantitative aquatic biological indicators: Their use to monitor trace metal and organochlorine pollution. London, United Kingdom: Applied Science Publishers.

    Google Scholar 

  • Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of Trace Aquatic Contaminants. Barking, United Kingdom: Applied Science Publishers.

    Book  Google Scholar 

  • Pierre Stecko, J. R., & Bendell-Young, L. I. (2000). Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary. Applied Geochemistry, 15, 753–775. doi:10.1016/S0883-2927(99)00090-6.

    Article  Google Scholar 

  • Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192. doi:10.1016/0025-326X(95)00116-5.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Blackmore, G. (2001). Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: changes in space and time. Marine Environmental Research, 51, 441–463. doi:10.1016/S0141-1136(00)00254-3.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., Liu, F., & Wang, W.-X. (2015). Metal accumulation and toxicity: the critical accumulated concentration of metabolically available zinc in an oyster model. Aquatic Toxicology, 162, 102–108. doi:10.1016/j.aquatox.2015.03.007.

    Article  CAS  Google Scholar 

  • Robinson, W. A., Maher, W. A., Krikowa, F., Nell, J. A., & Hand, R. (2005). The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring. Journal of Environmental Monitoring, 7, 208–223. doi:10.1039/b415295f.

    Article  CAS  Google Scholar 

  • Rubio, A. M., White, I., & Ford, P. (2008). The dynamic and distribution of food supplies for the Sydney rock oyster in southern NSW estuaries. Canberra, ACT: Fisheries Research & Development Corporation, Commonwealth Government.

    Google Scholar 

  • Rubio, A. M., Frances, J., Coad, P., Stubbs, J., & Guise, K. (2013). The onset and termination of the QX disease window of infection in Sydney rock oyster (Saccostrea glomerata) cultivated in the Hawkesbury River, NSW, Australia. Journal of Shellfish Research, 32, 483–496. doi:10.2983/035.032.0228.

    Article  Google Scholar 

  • Scammell, M. S. (1992). The impact of tributyl-tin based antifouling paints on the commercial oyster, Saccostrea commercialis: Quantitative aspects of estuarine environmental management (Ph.D. thesis). Sydney, Australia: University of Sydney.

    Google Scholar 

  • Scanes, P. R., & Roach, A. C. (1999). Determining natural ‘background’ concentrations of trace metals in oysters from New South Wales, Australia. Environmental Pollution, 105, 437–446. doi:10.1016/S0269-7491(99)00030-5.

    Article  CAS  Google Scholar 

  • Schmitz, H. A., Maher, W. A., Taylor, A. M., & Krikowa, F. (2015). Effects of cadmium accumulation from suspended sediments and phytoplankton on the oyster Saccostrea glomerata. Aquatic Toxicology, 160, 22–30. doi:10.1016/j.aquatox.2014.12.019.

    Article  CAS  Google Scholar 

  • Schoellhamer, D. H. (1995). Sediment resuspension mechanisms in Old Tampa Bay, Florida. Estuarine, Coastal and Shelf Science, 40, 603–620. doi:10.1006/ecss.1995.0041.

    Article  Google Scholar 

  • Schoellhamer, D. H. (1996). Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuarine, Coastal and Shelf Science, 43, 533–548. doi:10.1006/ecss.1996.0086.

    Article  Google Scholar 

  • Shi, D., & Wang, W.-X. (2004). Understanding the differences in Cd and Zn bioaccumulation and subcellular storage among different population of marine clams. Environmental Science and Technology, 38, 449–456. doi:10.1021/es034801o.

    Article  CAS  Google Scholar 

  • Shi, D., & Wang, W.-X. (2005). Uptake of aqueous and dietary metals by mussel Perna viridis with different Cd exposure histories. Environmental Science and Technology, 39, 9363–9369. doi:10.1021/es051151a.

    Article  CAS  Google Scholar 

  • Shulkin, V. M., Presley, B. J., & Kavun, V. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29, 493–502. doi:10.1016/S0160-4120(03)00004-7.

    Article  CAS  Google Scholar 

  • Simpson, S. L., & Batley, G. E. (2007). Predicting metal toxicity in sediments: a critique of current approaches. Integrated Environmental Assessment and Management, 3, 18–31. doi:10.1897/1551-3793(2007)3[18:PMTISA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Strandesena, M., Birkved, M., Holm, P. E., & Hauschild, M. Z. (2007). Fate and distribution modelling of metals in life cycle impact assessment. Ecological Modelling, 203, 327–338. doi:10.1016/j.ecolmodel.2006.12.013.

    Article  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, 149, 43–52. doi:10.1007/BF00048645.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belzile, N., Devitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387–404. doi:10.1016/0016-7037(95)00413-0.

    Article  CAS  Google Scholar 

  • Tipping, E. (1986). Some aspects of the interactions between particulate oxides and aquatic humic substances. Marine Chemistry, 18, 161–169. doi:10.1016/0304-4203(86)90005-8.

    Article  CAS  Google Scholar 

  • Turner, A. (1996). Trace-metal partitioning in estuaries: importance of salinity and particle concentration. Marine Chemistry, 54, 27–39. doi:10.1016/0304-4203(96)00025-4.

    Article  CAS  Google Scholar 

  • Wang, W.-X., & Fisher, N. S. (1999). Delineating metal accumulation pathways for aquatic invertebrates. Science of the Total Environment, 237–238, 459–472. doi:10.1016/S0048-9697(99)00158-8.

    Article  Google Scholar 

  • Wang, W.-X., & Rainbow, P. S. (2005). Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety, 61, 145–159. doi:10.1016/j.ecoenv.2005.01.008.

    Article  CAS  Google Scholar 

  • Wang, W.-X., Yan, Q.-L., Fan, W., & Xu, Y. (2002). Bioavailability of sedimentary metals from a contaminated bay. Marine Ecology Progress Series, 240, 27–38. doi:10.3354/meps240027.

    Article  CAS  Google Scholar 

  • Ward, J. E., & Shumway, S. E. (2004). Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 300, 83–130. doi:10.1016/j.jembe.2004.03.002.

    Article  Google Scholar 

  • Ward, J. E., Levinton, J. S., Shumway, S. E., & Cucci, T. (1997). Site of particle selection in a bivalve mollusc. Nature, 390, 131–132. doi:10.1038/36481.

    Article  CAS  Google Scholar 

  • Weng, N., & Wang, W.-X. (2014). Improved tolerance of metals in contaminated oyster larvae. Aquatic Toxicology, 146, 61–69. doi:10.1016/j.aquatox.2013.10.036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an Australian Research Council grant (no. LP0991037). We thank the Sydney Institute of Marine Science, Sydney Harbour Federation Trust, Mosman Amateur Sailing Club and University of Technology Sydney for allowing access to collect samples and deploy oyster cages at their properties. Tom Savage is thanked for ICP-OES analysis of all samples and maintaining data quality throughout. Dr. Russell Richards is thanked for his contribution with the oyster transplant experiment and Aroon Melwani for processing these oyster samples in the laboratory. Mr. Giha Lee and Mrs. Eun Sil Lee are thanked for the help with collecting wild oyster and sediment samples from the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ho Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 377 kb)

ESM 2

(DOCX 379 kb)

ESM 3

(DOCX 17 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOCX 17 kb)

ESM 6

(DOCX 16 kb)

ESM 7

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Birch, G.F. The mismatch of bioaccumulated trace metals (Cu, Pb and Zn) in field and transplanted oysters (Saccostrea glomerata) to ambient surficial sediments and suspended particulate matter in a highly urbanised estuary (Sydney estuary, Australia). Environ Monit Assess 188, 236 (2016). https://doi.org/10.1007/s10661-016-5244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5244-0

Keywords

Navigation