Skip to main content

Advertisement

Log in

Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mangrove sediments are strong modulators of organic matter (OM) content and pollutant dynamics, acting both as sinks and sources of these components. This study aimed to assess temporal dynamics of OM within temperate mangrove sediments and their ability to sequester pollutants. Specifically, levels of trace metals (Fe, Cu, Zn, Pb, Cd) and a metalloid (As) were examined within mangrove and mudflat sediments located in a high-energy environment in Mangawhai Harbour Estuary, northern New Zealand. Sediment cores were collected from a mangrove stand and adjacent mudflats at three sediment depths during different months over a year. Variations in OM and elements were compared to rainfall and temperature patterns observed during the sampling period. All element concentrations, except for those of As, were significantly higher in mangrove compared to mudflat sediments during the entire sampling period. This is consistent with the well-reported ability of mangroves to trap suspended particles and OM. In addition, we observed a decreasing trend in trace metal concentrations with increasing sediment depth within mangrove habitat, which correlated well with decreasing OM content. Our results also suggested that most elements had different, but significant, temporal variations throughout the year, especially in mangrove sediments. Overall, the concentrations of Cu, Zn, Pb, Cd, and As in mangrove sediments increased during summer, whereas maximum levels of Fe and OM were observed in winter. This temporal pattern was determined to be related to OM and redox cycling as a result of changes in effluent input rates and physical/chemical environments during different seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand [conference paper]. Environmental Monitoring and Assessment, 136(1–3), 227–238. https://doi.org/10.1007/s10661-007-9678-2.

    Article  CAS  Google Scholar 

  • Aggett, J., & Simpson, J. D. (1986). Copper, chromium, and lead in manukau harbour sediments. New Zealand Journal of Marine and Freshwater Research, 20(4), 661–663. https://doi.org/10.1080/00288330.1986.9516186.

    Article  CAS  Google Scholar 

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India, Estuarine. Coastal and Shelf Science, 67(1–2), 333–339.

    Article  CAS  Google Scholar 

  • Alfaro, A. C. (2010). Effects of mangrove removal on benthic communities and sediment characteristics at Mangawhai harbour, northern New Zealand. ICES Journal of Marine Science, 67(6), 1087–1104. https://doi.org/10.1093/icesjms/fsq034.

    Article  Google Scholar 

  • Alongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology, 15(1), 59–79.

    Article  CAS  Google Scholar 

  • Alongi, D. (2009). The energetics of mangrove forests. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-4271-3.

  • Alongi, D. M., Tirendi, F., & Clough, B. F. (2000). Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquatic Botany, 68(2), 97–122. https://doi.org/10.1016/S0304-3770(00)00110-8.

    Article  Google Scholar 

  • Avnimelech, Y., Ritvo, G., Meijer, L. E., & Kochba, M. (2001). Water content, organic carbon and dry bulk density in flooded sediments. Aquacultural Engineering, 25(1), 25–33. https://doi.org/10.1016/S0144-8609(01)00068-1.

    Article  Google Scholar 

  • Barreiro, R., Real, C., & Carballeira, A. (1994). Heavy-metal horizontal distribution in surface sediments from a small estuary (Pontedeume, Spain). Science of the Total Environment, 154(1), 87–100.

    Article  CAS  Google Scholar 

  • Bastakoti, U., Robertson, J., & Alfaro, A. C. (2018). Spatial variation of heavy metals in sediments within a temperate mangrove ecosystem in northern New Zealand. Marine Pollution Bulletin, 135, 790–800. https://doi.org/10.1016/j.marpolbul.2018.08.012.

    Article  CAS  Google Scholar 

  • Bernini, E., da Silva, M. A., Carmo, T., & Cuzzuol, G. R. (2010). Spatial and temporal variation of the nutrients in the sediment and leaves of two Brazilian mangrove species and their role in the retention of environmental heavy metals. Brazilian Journal of Plant Physiology, 22(3), 177–187.

    Article  Google Scholar 

  • Bilgili, M. S., Demir, A., & Özkaya, B. (2007). Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of Hazardous Materials, 143(1–2), 177–183.

    Article  CAS  Google Scholar 

  • Birch, G., Nath, B., & Chaudhuri, P. (2015). Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia). Environmental Science and Pollution Research, 22(8), 6185–6197.

    Article  CAS  Google Scholar 

  • Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith III, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052.

    Article  Google Scholar 

  • Bourgeois, C., Alfaro, A. C., Dencer-Brown, A., Duprey, J. L., Desnues, A., & Marchand, C. (2019a). Stocks and soil-plant transfer of macro-nutrients and trace metals in temperate New Zealand estuarine mangroves. Plant and Soil, 436(1–2), 565–586.

    Article  CAS  Google Scholar 

  • Bourgeois, C., Alfaro, A. C., Leopold, A., Andréoli, R., Bisson, E., Desnues, A., Duprey, J. L., & Marchand, C. (2019b). Sedimentary and elemental dynamics as a function of the elevation profile in a semi-arid mangrove toposequence. Catena, 173, 289–301.

    Article  CAS  Google Scholar 

  • Burone, L., Muniz, P., Pires-Vanin, A. M. S., & Rodrigues, M. (2003). Spatial distribution of organic matter in the surface sediments of Ubatuba Bay (southeastern–Brazil). Anais da Academia Brasileira de Ciências, 75(1), 77–90.

    Article  Google Scholar 

  • Chappell, P.R. (2013). The climate and weather of Northland. NIWA Science and Technology Series (Vol 59, pp 40). Retrieved 04 Oct 2019 from https://www.nrc.govt.nz/resource-library-summary/research-and-reports/climate-and-weather/the-climate-and-weather-ofnorthland/

  • Clark, M. W., McConchie, D., Lewis, D. W., & Saenger, P. (1998). Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: A geochemical model. Chemical Geology, 149(3–4), 147–171. https://doi.org/10.1016/S0009-2541(98)00034-5.

    Article  CAS  Google Scholar 

  • Department of Land & Survey NZ (1980). NZMS 290 Sheet R08109. New Zealand land Inventory. Retrieved 10 Nov 2019 from https://whangarei.recollect.co.nz/nodes/view/166

  • Desmond, M., Hepburn, C. & McLeod, R. (2012). Metal concentrations within the sediments of Hawksbury lagoon/Matainaka. Department of Marine Science, Department of Chemistry, University of Otago, Dunedin, New Zealand. Retrieved 19 Jul 2017 http://www.hawksburylagoon.org.nz.

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025.

    Article  CAS  Google Scholar 

  • Development Core Team. (2017). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.

  • Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), 973–980. https://doi.org/10.1016/j.envint.2004.03.001.

    Article  CAS  Google Scholar 

  • Feller, I. C., Friess, D. A., Krauss, K. W., & Lewis, R. R. (2017). The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia, 803(1), 1–12.

    Article  Google Scholar 

  • Feng, J., Zhu, X., Wu, H., Ning, C., & Lin, G. (2017). Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove–aquaculture wetland in Shenzhen, China. Marine Pollution Bulletin, 124(2), 1033–1039.

    Article  CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. T. (1981). Metal pollution in the aquatic environment. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-69385-4

    Book  Google Scholar 

  • Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1(1), 3–10.

    Article  Google Scholar 

  • Glasby, G. P., Stoppers, P., Walter, P., Davis, K. R., & Renner, R. M. (1988). Heavy-metal pollution in Manukau and Waitemata harbours, New Zealand. New Zealand Journal of Marine and Freshwater Research, 22(4), 595–611. https://doi.org/10.1080/00288330.1988.9516329.

    Article  CAS  Google Scholar 

  • Gray, C. W., McLaren, R. G., & Roberts, A. H. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. Science of the Total Environment, 305(1–3), 105–115.

    Article  CAS  Google Scholar 

  • Gritcan, I., Duxbury, M., Leuzinger, S., & Alfaro, A. C. (2016). Leaf stable isotope and nutrient status of temperate mangroves as ecological indicators to assess anthropogenic activity and recovery from eutrophication. Frontiers in Plant Science, 7, 1922.

    Article  Google Scholar 

  • Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738.

    Article  Google Scholar 

  • Harbison, P. (1986). Mangrove muds—A sink and a source for trace metals. Marine Pollution Bulletin, 17(6), 246–250. https://doi.org/10.1016/0025-326X(86)90057-3.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481.

    Article  Google Scholar 

  • Hulbert, C. P. (2014). Holocene habitat analysis and organism-sediment interactions at Mangawhai estuary, North Island, New Zealand (MSc thesis). University of Auckland.

  • Kristensen, E., Flindt, M. R., Ulomi, S., Borges, A. V., Abril, G., & Bouillon, S. (2008). Emission of CO2 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Marine Ecology Progress Series, 370, 53–67. https://doi.org/10.3354/meps07642.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (1998). Trace metals biogeochemistry and diffuse pollution in mangrove ecosystems. ISME Mangrove Ecosystems Occasional Papers, 2, 1–61.

    Google Scholar 

  • Lacerda, L. D., Martinelli, L. A., Rezende, C. E., Mozeto, A. A., Ovalle, A. R. C., Victoria, R. L., Silva, C. A. R., & Nogueira, F. B. (1988). The fate of trace metals in suspended matter in a mangrove creek during a tidal cycle. Science of the Total Environment, 75(2–3), 169–180. https://doi.org/10.1016/0048-9697(88)90030-7.

    Article  CAS  Google Scholar 

  • Lau, S. S. S., & Chu, L. M. (1999). Contaminant release from sediments in a coastal wetland. Water Research, 33(4), 909–918.

    Article  CAS  Google Scholar 

  • Li, R., Qiu, G. Y., Chai, M., Shen, X., & Zan, Q. (2019). Effects of conversion of mangroves into gei Wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments. Environmental Geochemistry and Health, 41(1), 159–174.

    Article  CAS  Google Scholar 

  • Lindsay, P. (2014). The hydrodynamics, sediment characteristics and inferred sediment dynamics of Mangawhai estuary, northland (MSc thesis). University of Auckland.

  • Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J., & Eyre, B. D. (2013). Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? Limnology and Oceanography, 58(2), 475–488.

    Article  CAS  Google Scholar 

  • Mangawhai Community Wastewater Scheme (2015). MCWWS community advisory panel. Final Report. Kaipara District. Retrieved from https://www.kaipara.govt.nz/site/kaiparadistrictcouncil/files/MCWWS%20pages/A-Z%20of%20documents/MCWWS%20Community%20Advisory%20Panel%20Final%20Report%20July%202015.pdf.

  • Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98(1), 1–17. https://doi.org/10.1016/j.marchem.2005.06.001.

    Article  CAS  Google Scholar 

  • Marchand, C., Allenbach, M., & Lallier-Vergès, E. (2011). Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, 160(3–4), 444–456. https://doi.org/10.1016/j.geoderma.2010.10.015.

    Article  CAS  Google Scholar 

  • Marchand, C., Fernandez, J. M., Moreton, B., Landi, L., Lallier-Vergès, E., & Baltzer, F. (2012). The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia). Chemical Geology, 300, 70–80.

    Article  Google Scholar 

  • Marchand, C., Fernandez, J. M., & Moreton, B. (2016). Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia). Science of the Total Environment, 562, 216–227.

    Article  CAS  Google Scholar 

  • Martin, T. D., Creed, J.T. & Brockhoff, C.A. (1991). Sample preparation procedure for spectrochemical determination of total recoverable elements. Method 200.2, revision 2.8. Environmental monitoring systems laboratory Office of Research and Development US. Environmental Protection Agency, Cincinnati, Ohio 45268.

  • Marx, S. K., Kamber, B. S., & McGowan, H. A. (2008). Scavenging of atmospheric trace metal pollutants by mineral dusts: Inter-regional transport of Australian trace metal pollution to New Zealand. Atmospheric Environment, 42(10), 2460–2478.

    Article  CAS  Google Scholar 

  • McCabe, P., Healy, T. R., & Nelson, C. S. (1985). Mangawhai Harbour and the development of its dual inlet system. In 1985 Australasian Conference on Coastal and Ocean Engineering (p. 518). Institution of Engineers, Australia.

  • Mirlean, N., Baisch, P., Travassos, M. P., & Nassar, C. (2011). Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast. Geo-Marine Letters, 31(1), 65–73. https://doi.org/10.1007/s00367-010-0215-x.

    Article  CAS  Google Scholar 

  • Morrisey, D., Beard, C., Morrison, M., Craggs, R., & Lowe, M. (2007). The New Zealand mangrove: Review of the current state of knowledge. Auckland Regional Council Technical Publication, 325.

  • Nelson, C. H., & Lamothe, P. J. (1993). Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries, 16(3), 496–511. https://doi.org/10.2307/1352597.

    Article  CAS  Google Scholar 

  • NIWA. (2014). National Institute of Water and Atmospheric Research. Retrieved 09 May 2018 from https://www.niwa.co.nz/climate/summaries/monthly/climate-summary-for-december-2014.

  • NIWA. (2015). National Institute of Water and Atmospheric Research. Retrieved 09 May 2018 from https://www.niwa.co.nz/climate/summaries/monthly/climate-summary-for-june-2015; https://www.niwa.co.nz/climate/summaries/annual/annual-climate-summary-2015.

  • NIWA. (2019). National Institute of Water and Atmospheric Research. Retrieved 04 Oct 2019 from https://www.niwa.co.nz/education-and-training/schools/resources/climate/overview/map_north.

  • Nóbrega, G. N., Ferreira, T. O., Romero, R. E., Marques, A. G. B., & Otero, X. L. (2013). Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environmental Monitoring and Assessment, 185(9), 7393–7407.

    Article  Google Scholar 

  • Noël, V., Morin, G., Juillot, F., Marchand, C., Brest, J., Bargar, J. R., Muñoz, M., Marakovic, G., Ardo, S., & Brown Jr., G. E. (2015). Ni cycling in mangrove sediments from New Caledonia. Geochimica et Cosmochimica Acta, 169, 82–98.

    Article  Google Scholar 

  • Noël, V., Juillot, F., Morin, G., Marchand, C., Ona-Nguema, G., Viollier, E., Prévot, F., Dublet, G., Maillot, F., Delbes, L., & Marakovic, G. (2017). Oxidation of Ni-rich mangrove sediments after isolation from the sea (Dumbea Bay, New Caledonia): Fe and Ni behavior and environmental implications. ACS Earth and Space Chemistry, 1(8), 455–464.

    Article  Google Scholar 

  • Nwadinigwe, C. A., Udo, G. J., & Nwadinigwe, A. O. (2014). Seasonal variations of heavy metals concentrations in sediment samples around major tributaries in Ibeno coastal area, Niger Delta, Nigeria. International Journal of Scientific and Technology Research, 3(11), 254–265.

    Google Scholar 

  • Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies [conference paper]. Environment International, 32(2), 219–223. https://doi.org/10.1016/j.envint.2005.08.014.

    Article  CAS  Google Scholar 

  • Sanders, C. J., Santos, I. R., Maher, D. T., Sadat-Noori, M., Schnetger, B., & Brumsack, H. J. (2015). Dissolved iron exports from an estuary surrounded by coastal wetlands: Can small estuaries be a significant source of Fe to the ocean? Marine Chemistry, 176, 75–82.

    Article  CAS  Google Scholar 

  • Sandilyan, S., & Kathiresan, K. (2012). Mangrove conservation: A global perspective. Biodiversity and Conservation, 21(14), 3523–3542.

    Article  Google Scholar 

  • Sandilyan, S., & Kathiresan, K. (2014). Decline of mangroves—a threat of heavy metal poisoning in Asia. Ocean and Coastal Management, 102, 161–168.

    Article  Google Scholar 

  • Silva, C. A. R., Lacerda, L. D., & Rezende, C. E. (1990). Metals reservoir in a red mangrove forest. Biotropica, 22, 339–345.

    Article  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—A tributary of the lower ganga, India. Environmental Geology, 39(1), 90–98. https://doi.org/10.1007/s002540050439.

    Article  CAS  Google Scholar 

  • Spalding, M., Kainuma, M., & Collins, L. (2010). World atlas of mangroves. A collaborative project of ITTO, ISME, FAO, UNEP-WCMC. London: Earthscan.

    Google Scholar 

  • Stats NZ. (2013). 2013 Census QuickStats about a place: Mangawhai. Retrieved 09 May 2018 from http://archive.stats.govt.nz/Census/2013-census/profile-and-summary-reports/quickstats-about-a-place.aspx?request_value=13163&tabname=13163&p=y&printall=true.

  • Sundaramanickam, A., Shanmugam, N., Cholan, S., Kumaresan, S., Madeswaran, P., & Balasubramanian, T. (2016). Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India. Environmental Pollution, 218, 186–195. https://doi.org/10.1016/j.envpol.2016.07.048.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1995). Spatial and temporal variations of heavy metal contamination in sediments of a mangrove swamp in Hong Kong. Marine Pollution Bulletin, 31(4–12), 254–261.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1996). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, 94(3), 283–291. https://doi.org/10.1016/S0269-7491(96)00115-7.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (1998). Variations of soil nutrient and organic matter content in a subtropical mangrove ecosystem. Water, Air, and Soil Pollution, 103(1–4), 245–261. https://doi.org/10.1023/A:1004925700931.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110(2), 195–205. https://doi.org/10.1016/S0269-7491(99)00310-3.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Yao, M. W. Y. (1998). Normalisation and heavy metal contamination in mangrove sediments. Science of the Total Environment, 216(1–2), 33–39.

    Article  CAS  Google Scholar 

  • Thanh-Nho, N., Strady, E., Nhu-Trang, T. T., David, F., & Marchand, C. (2018). Trace metals partitioning between particulate and dissolved phases along a tropical mangrove estuary (can Gio, Vietnam). Chemosphere, 196, 311–322.

    Article  CAS  Google Scholar 

  • Thanh-Nho, N., Marchand, C., Strady, E., Vinh, T. V., & Nhu-Trang, T. T. (2019). Metals geochemistry and ecological risk assessment in a tropical mangrove (can Gio, Vietnam). Chemosphere, 219, 365–382.

    Article  CAS  Google Scholar 

  • Tran, P. (2014). Allometry, biomass and litter decomposition of the New Zealand mangrove Avicennia marina var. australasica. Auckland University of Technology. Retrieved from http://hdl.handle.net/10292/7674

  • Valois, A. (2017). Mangawhai harbour water quality project. National Institute of Water & Atmospheric Research Ltd (NIWA). NIWA Client Report No: 2017282HN. NIWA Project: KDC17201 (prepared for Mangawhai harbour water quality group).

  • Vidal-Durà, A., Burke, I. T., Stewart, D. I., & Mortimer, R. J. (2018). Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation. Estuarine, Coastal and Shelf Science, 207, 40–55.

    Article  Google Scholar 

  • Webster, J. G., Brown, K. L., & Webster, K. S. (2000). Source and transport of trace metals in the Hatea River catchment and estuary, Whangarei, New Zealand. New Zealand Journal of Marine and Freshwater Research, 34(1), 187–201. https://doi.org/10.1080/00288330.2000.9516925.

    Article  Google Scholar 

  • Woodroffe, C. D. (1982). Litter production and decomposition in the New Zealand mangrove, Avicennia marina var. resinifera. New Zealand Journal of Marine & Freshwater Research, 16(2), 179–188.

    Article  Google Scholar 

  • Woodroffe, C. D. (1985). Studies of a mangrove basin, tuff crater, New Zealand: I. mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science, 20(3), 265–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Alfaro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Mean values (± SE) for sediment parameters (OM = organic matter %, Fe = iron mg kg−1, Cu = copper mg kg−1, Zn = zinc mg kg−1, Pb = lead mg kg−1, Cd = cadmium mg kg−1, As = arsenic mg kg−1) recorded on top (T), middle (M), and bottom (B) from mangrove and mudflat in different months

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastakoti, U., Robertson, J., Bourgeois, C. et al. Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments. Environ Monit Assess 191, 780 (2019). https://doi.org/10.1007/s10661-019-7916-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7916-z

Keywords

Navigation