Skip to main content
Log in

Eco-toxicological effects of two kinds of lead compounds on forest tree seed in alkaline soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to compare the different eco-toxicological effects of lead nitrate and lead acetate on forest tree seed, a biological incubation experiment was conducted to testify the inhibition effects of two lead compounds on rates of seed germination, root and stem elongation, and seedling fresh weight for six plants (Amaorpha fruticosa L., Robinia psedoacacia L., Pinus tabuliformis Carr., Platycladus orientalis L., Koelreuteria paniculata Laxm., Hippophae rhamnoides L.) in soil. The results indicate that the inhibition effects of the two lead compounds on the rates of root elongation of plants were greater than other indices; root elongation can possibly be used as indices to investigate the relationship between lead toxicity and plant response. The response of trees to lead toxicity varied significantly, and the order of tolerance to lead pollution was as follows: Amaorpha fruticosa L. > Platycladus orientalis L. > Koelreuteria paniculata Laxm. > Robinia psedoacacia L. > Pinus tabuliformis Carr. > Hippophae rhamnoides L. Therefore, we suggest that Amaorpha fruticosa L. and Platycladus orientalis L. be used as tolerant plants for soil phytoremediation and Hippophae rhamnoides L. as an indicative plant to diagnose the toxicity of lead pollution on soil quality. Lead nitrate and lead acetate differentially restrain seeds, with seeds being more sensitive to lead nitrate than lead acetate in the soil. Thus, the characteristics of lead compounds should be taken into full consideration to appraise its impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basta, N. T., & Tabatabai, M. A. (1992). Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science, 153(3), 195–204.

    Article  CAS  Google Scholar 

  • Begonia, G. B., Davis, C. D., & Begonia, M. F. (1998). Growth responses of Indian mustard (Brassica juncea (L.) Czern) and its phytoextraction of Lead from a contaminated soil. Bulletin of Environmental Contamination and Toxicology, 61(1), 38–43.

    Article  CAS  Google Scholar 

  • Boscagli, A., & Sette, B. (2001). Seed germination enhancement in Satureja montana L. ssp. Montana. Seed Science and Technology, 29(2), 347–355.

    Google Scholar 

  • Bruemmer, G. W., Gerth, J., & Tiller, K. G. (1988). Reaction kinetics of the adsorption and desorption of nickel, zinc, and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science, 39(1), 37–52.

    Article  CAS  Google Scholar 

  • Chen, Y. P., Liu, Q., Yue, X. Z., Meng, Z. W., & Liang, J. (2013). Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environmental Science and Pollution Research, 20(7), 4807–4816.

    Article  CAS  Google Scholar 

  • Chu, Y., Fu, D. Q., & Wang, J. H. (2009). Studies on lead-endurance of seed germination and radical growth of three kinds vegetables. China Vegetables, 18(18), 56–59.

    Google Scholar 

  • Degraeve, N. (1981). Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutation Research, 86(2), 115–135.

    Article  CAS  Google Scholar 

  • Ghani, A., Shah, A. U., & Akhtar, U. (2010). Effect of lead toxicity on growth, chlorophyll and lead (Pb”). Pakistan Journal of Nutrition, 9(9), 887–891.

    Article  CAS  Google Scholar 

  • Huang, J. W., & Cunningham, S. D. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 134(1), 75–84.

    Article  CAS  Google Scholar 

  • Jin, C. X., Liu, J. J., Bao, L. L., Zhou, Q. X., & Zhou, Q. X. (2010). Joint toxicity of sulfamonomethoxine and Cd on seed germination and root elongation of crops in soil. China Environmental Science, 30(6), 839–844.

    CAS  Google Scholar 

  • Kambhampati, M. S., Begonia, G. B., Begonia, M. F. T., & Bufford, Y. (2003). Phytoremediation of a lead-contaminated soil using morning glory (Ipomoea lacunosa L.): effects of a synthetic chelate. Bulletin of Environmental Contamination and Toxicology, 71(2), 379–386.

    Article  CAS  Google Scholar 

  • Kastori, R., Maksimovic, I., Dorogházi, O., & Putnik-Delic, M. (2012). Effect of lead contamination of maize seed on its biological properties. Zbornik Matice srpske za prirodne nauke, 123, 75–82.

    Article  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. China Environmental Pollution, 152(3), 686–692.

    Article  CAS  Google Scholar 

  • Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., & Sayah, F. (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies, 334(2), 118–126.

    Article  CAS  Google Scholar 

  • Liu, F. (2011). Seed experiment guide. Beijing: Chemical Industry Press.

    Google Scholar 

  • Ma, T. T., Christie, P., Teng, Y., & Luo, Y. M. (2013). Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis (2-ethylhexyl) phthalate. Environmental Science and Pollution Research, 20(8), 5289–5298.

    Article  CAS  Google Scholar 

  • Malecka, A., Piechalak, A., & Tomaszewska, B. (2009). Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiologiae Plantarum, 31(5), 1053–1063.

    Article  CAS  Google Scholar 

  • Podazza, G., Rosa, M., González, J. A., Hilal, M., & Prado, F. E. (2006). Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of rangpur lime (Citrus limonia L. Osbeck). Plant Biology, 8(5), 706–714.

    Article  CAS  Google Scholar 

  • Rashed, M. N. (2001). Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environmental Monitoring and Assessment, 68(1), 75–89.

    Article  CAS  Google Scholar 

  • Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A., & Baker, A. J. M. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution, 144(2), 681–688.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blayloc, K. M., & Kumarnp, B. A. (1995). Phytoremediation: anovel strategy for the removal of toxic metals from the environment using plants. Biotechnology Journal, 13, 468–474.

    Article  CAS  Google Scholar 

  • Srinivas, J., Purushotham, A. V., & Murali Krishna, K. V. S. G. (2013). The effects of heavy metals on seed germination and plant growth on Coccinia, Mentha and Trigonella plant seeds in Timmapuram, E.G. District, Andhra Pradesh, India. International Research Journal of Environment Sciences, 2(6), 20–24.

    Google Scholar 

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655.

    Article  CAS  Google Scholar 

  • Wang, X. D., Sun, C., Gao, S. X., Wang, L. S., & Han, S. K. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with cucumis sativus. Chemosphere, 44(1), 1711–1721.

    Article  CAS  Google Scholar 

  • Wu, S., Luo, G. Y., & Yang, Q. J. (2008). Effects of lead stress on seed germination and seedlings growth of Brassica pekinensis Rupr. Seed, 27(9), 57–59.

    CAS  Google Scholar 

  • Xu, Y., Li, G., Han, C., Sun, L., Zhao, R., & Cui, S. (2005). Protective effects of Hippophae rhamnoides L. juice on lead-induced neurotoxicity in mice. Biological and Pharmaceutical Bulletin, 28(3), 490–494.

    Article  CAS  Google Scholar 

  • Yang, Z. Y. (1993). Lead in the soil-plant system. Soil Science Society of China, 21(2), 1–10.

    Google Scholar 

  • Yang, J. Y., & Yang, X. (2005). Resource and bio-availability of Lead in soil. China Journal of Soil Science, 36, 765–772.

    CAS  Google Scholar 

  • Yang, N., Wang, J., Zhou, F., & Wang, Y. (2011). Effects of lead stress on antioxidant enzymes activities of Robinia psedoacacia and Amaorpha fruticosa. China Journal of Arid Land Resources and Environment, 26(5), 168–171.

    Google Scholar 

  • Ye, L. C., Zhang, Q. S., Jiang, X. J., Zhu, X. M., Lin, L. J., & Shao, J. R. (2010). Characteristics of accumulating lead and zinc by diggings plant Pseudostellaria maximowicziana. China Environmental Sciences, 30(2), 239–245.

    CAS  Google Scholar 

  • Zhang, Y. L., Wang, Y. Q., & Hu, H. Y. (2009). Study on farmland soil physical status in Guanzhong area of Shaanxi. Agricultural Research in the Arid Areas, 29, 75–79.

    CAS  Google Scholar 

  • Zhou, F., Wang, J., & Yang, N. (2015). Growth responses, antioxidant enzyme activities and lead accumulation of Sophora japonica and Platycladus orientalis seedlings under Pb and water stress. Plant Growth Regulation, 75(1), 383–389.

    Article  CAS  Google Scholar 

  • Zhuang, J., Yu, G. R., & Liu, X. Y. (2000). Characteristics of lead sorption on clay minerals in relation to metal oxides. Pedosphere, 10(1), 11–20.

    Google Scholar 

Download references

Acknowledgments

This research project (31170579) was financially supported by National Natural Science Foundation of China. I thank Prof. Dr. Jin-xin Wang for his excellent supervision. Much appreciation goes out to Fu-rong Zhou for the practical contribution in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Zhou, Fr. & Wang, Jx. Eco-toxicological effects of two kinds of lead compounds on forest tree seed in alkaline soil. Environ Monit Assess 188, 201 (2016). https://doi.org/10.1007/s10661-016-5198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5198-2

Keywords

Navigation