Skip to main content
Log in

Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect on seaweeds Scytosiphon lomentaria and Ulva rigida of coastal waters of sites with mining activity, using oxidative stress biomarkers and heavy metal determination both in water and in tissue. The greatest bioaccumulation factors in S. lomentaria and U. rigida were founded for iron and arsenic in Quintay. Bioaccumulation factor in S. lomentaria in descending order was Fe> Cu> Zn> Cd> Cr> As> Mo and in U. rigida, in descending order, was Fe> Cu> Cd> Zn> Cr> Mo> As. Both species had higher antioxidant activity levels in areas with high mining activities. The concentration of metals in waters such as copper and arsenic in S. lomentaria, and iron, arsenic, and cadmium in U. rigida were related with oxidative stress biomarkers measured in both species. The use of both species is proposed to monitor the bioavailability and oxidative damage in coastal areas with mining activity. This work will generate a significant knowledge about the impact of mining wastes on macroalgal community in the area of north-central Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzimology., 105, 121–126.

    Article  CAS  Google Scholar 

  • Astorga-España, M., Calisto-Ulloa, N., & Guerrero, S. (2008). Baseline concentrations of trace metals in macroalgae from the strait of Magellan Chile. Bulletin of Environmental Contamination and Toxicology, 80, 97–101.

    Article  Google Scholar 

  • Boese, B., & Lee, H. (1992). Synthesis of methods to predict bioaccumulation of sediment pollutants. Environmental Protection Agency. Environmental Research Laboratory. Narragansett RI: ERL-N No. N232. U.S.

    Google Scholar 

  • CADE-IDEPE. (2004a). Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del río Copiapó (p. 122). Valparaíso: Dirección General de Aguas (DGA).

  • CADE-IDEPE. (2004b). 2004. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del río Huasco (p. 111). Valparaíso: Dirección General de Aguas (DGA).

  • Camus, C., Meynard, A., Faugeron, S., Kogame, K., & Correa, J. A. (2005). Differential life history phase expression in two coexisting species of Scytosiphon (Phaeophyceae) in northern Chile. Journal of Phycology, 41, 931–941.

    Article  Google Scholar 

  • Cañete, J., Leighton, G., & Soto, E. (2000). Proposición de un índice de vigilancia ambiental basado en la variabilidad temporal de la abundancia de dos especies de poliquetos bentónicos de bahía Quintero, Chile. Revista de biología marina y oceanografía, 35(2), 185–194.

    Article  Google Scholar 

  • Cárcamo, P., Córtes, M., Ortega, L., Squeo, F., & Gaymer, C. (2011). Crónica de un conflicto anunciado: Tres centrales termoeléctricas acarbón en un hotspot de biodiversidad de importancia mundial. Revista Chilena de Historia Natural, 84, 171–180.

    Article  Google Scholar 

  • Castilla, J. (1983). Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin, 14, 459–464.

    Article  CAS  Google Scholar 

  • Carvalho-Neta, R., & Abreu-Silva, A. (2010). Sciades herzbergii oxidative stress biomarkers: an in situ study of an estuarine ecosystem (São Marcos’ Bay, Maranhão, Brazil). Brazilian Journal of Oceanography, 58; N° special 4, 11–17.

    Article  Google Scholar 

  • Castro, C., & Pozo, V. (1995). Determinación de unidades con deterioro ambiental en el entorno de la Bahía de Quintero (320 38'y 320 48'latitud sur y los 710 28'y 710 40'longitud oeste). Revista de Geografía Norte Grande, 22, 21–26.

    Google Scholar 

  • CONAMA, 2004. Guía conama para el establecimiento de las normas Secundarias de calidad ambiental para aguas continentales superficiales y marinas. Ministerio del medio ambiente de Chile

  • Contreras, L., Moenne, A., & Correa, J. (2005). Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper enriched coastal environments. Journal of Phycology, 41, 1184–1195.

    Article  CAS  Google Scholar 

  • Contreras-Porcia, L., Callejas, S., Thomas, D., Sordet, C., Pohnert, G., Contreras, A., Lafuente, A., Flores-Molina, M. R., & Correa, J. A. (2012). Seaweeds early development: detrimental effects of desiccation and attenuation by algal extracts. Planta, 235, 337–348.

    Article  CAS  Google Scholar 

  • Dou, Y., Li, J., Zhao, J., Hu, B., & Yang, S. (2013). Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine Pollution Bulletin, 67, 137–145.

    Article  CAS  Google Scholar 

  • Etcheverry, H. (1958). “Bibliografía de las algas chilenas”. Capítulo V. Revista de Biología Marina, 7(1, 2, 3), 163–182.

    Google Scholar 

  • Esterbauer, K., Cheeseman, H., Dianzani, M., Poli, G., & Slater, T. (1982). Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochemical Journal, 208(1), 129–140.

    Article  CAS  Google Scholar 

  • Fridovich, I. (1989). Superoxide dismutase: an adaptation to a paramagnetic gas. Journal of Biological Chemistry, 264(14), 7761–7764.

    CAS  Google Scholar 

  • Gaete, H., Hidalgo, M., Neaman, A., & Avila, G. (2010). Evaluación de la toxicidad de cobre en suelos a través de biomarcadores de estrés oxidativo en Eisenia foetida. Quimica Nova, 33(3), 566–570.

    Article  CAS  Google Scholar 

  • Ginocchio, R. (2000). Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere, 41, 15–23.

    Article  CAS  Google Scholar 

  • Halliwell, B. (2006). Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. (1995). The definition and measurement of antioxidants in biological systems. Radical Biology Medicine, 18, 125–126.

    Article  CAS  Google Scholar 

  • Hamdy, A. (2000). Biosorption of heavy metals by marine algae. Current Microbiology, 41, 232–238.

    Article  CAS  Google Scholar 

  • Hidalgo, M., Fernández, E., Cabello, A., Rivas, C., Fontecilla, F., Morales, L., Aguirre, A., & Cabrera, E. (2006). Evaluación de la respuesta antioxidante en Chiton granosus Frembly, 1928 (Mollusca: Polyplacophora) a contaminantes oxidativos. Revista de Biología Marina y Oceanografía, 41(2), 155–165.

    Article  Google Scholar 

  • Hoffmann, A., & Santelices, B. (1997). Flora Marina de Chile Central. Ediciones Universidad Católica de Chile. Chile: Santiago. 434 pp.

    Google Scholar 

  • Jara, C., Gaete, H., Lobos, G., & Hidalgo, M. (2014). Oxidative stress in the mollusk Echinolittorina peruviana (Gasteropoda: Littorinidae, Lamarck, 1822) and trace metals in coastal sectors with mining activity. Ecotoxicology, 23, 1099–1108.

    Article  CAS  Google Scholar 

  • Karavoltsos, S., Sakellari, A., Strmecki, S. M., Plavšic, E., Ioannou, V., Roussis, M., Dassenakis, M., & Scoullos, M. (2013). Copper complexing properties of exudates and metabolites of macroalgae from the Aegean Sea. Chemosphere, 91, 1590–1595.

    Article  CAS  Google Scholar 

  • Lee, M., Correa, J., & Zhang, H. (2002). Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into coastal waters of the Atacama region of northern Chile. Marine Pollution Bulletin, 44, 956–961.

    Article  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N., & Farr, A. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Maeda, S., & Sakaguchi, T. (1990). Accumulation and detoxification of toxic metal elements by algae. In I. Akatsuka (Ed.), Introduction to applied phycology (pp. 109–136). The Hague: SPB Academic Publishing.

    Google Scholar 

  • Medina, M., Andrade, S., Faugeron, S., Lagos, N., Mella, D., & Correa, J. A. (2005). Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Marine Pollution Bulletin, 50, 396–409.

    Article  CAS  Google Scholar 

  • Mehta, S., & Gaur, J. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical Reviews in Biotechnology, 25, 113–152.

    Article  CAS  Google Scholar 

  • Monserrat, J., Geracitano, L., & Bianchini, A. (2003). Current and future perspective using biomarkers to assess pollution in aquatic ecosystems. Comments on Toxicology, 9, 255–269.

    Article  CAS  Google Scholar 

  • Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E., & Medez-Rodriguez, L. C. (2010). Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210, 197.

    Article  Google Scholar 

  • Patrón-Prado, M., Casas-Valdez, M., Serviere-Zaragoza, E., Zenteno-Savín, D. B., Lluch-Cota, L., & Méndez-Rodríguez, L. C. (2011). Biosorption capacity or cadmiumo brown seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California. Water, Air, and Soil Pollution, 221, 137–144.

    Article  Google Scholar 

  • Phillips, D. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments, a review. Environmental Pollution, 13, 281–317.

    Article  CAS  Google Scholar 

  • Radwan, M., El-Gendy, K., & Gad, A. (2010). Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere, 79, 40–46.

    Article  CAS  Google Scholar 

  • Ramirez, M., Massolo, S., Frache, R., & Correa, J. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.

    Article  CAS  Google Scholar 

  • Rybak, A., Messyasz, B., & Łeska, B. (2013). The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its hábitat. Ecotoxicology, 22, 558–573.

    Article  CAS  Google Scholar 

  • Rodriguez, J., Menéndez, J., & Trujillo, Y. (2001). Radicales libres en la biomedicina y estrés oxidativo. Revista Cubana Medicine Millitary, 30(1), 36–44.

    Google Scholar 

  • Romay, C., Pascual, C., & Lissi, E. (1996). The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Brazilian Journal of Medical and Biological Research, 29, 175–183.

    CAS  Google Scholar 

  • Romera, E., González, F., Ballester, A., Blázquez, M., & Muñoz, J. (2006). Biosorption with algae: a statistical review. Critical Reviews in Biotechnology, 26, 223–235.

    Article  CAS  Google Scholar 

  • Ryan, S,, McLoughlin, P., & O’Donovanm, O. (2012). A comprehensive study of metal distribution in three main classes of seaweed. Environmental Pollution 167, 171--177.

  • Solaun, O., Rodriguez, J. G., Borja, A., Gonzalez, M., & Saiz-Salinas, J. I. (2013). Biomonitoring of metals under the water framework directive: detecting temporal trends and abrupt changes, in relation to the removal of pollution sources. Marine Pollution Bulletin, 26–35.

  • Soto, P., Gaete, H., & Hidalgo, M. E. (2011). Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research, 39(2), 280–285.

    Article  Google Scholar 

  • Stauber, J., Andrade, S., Ramirez, M., Adams, M., & Correa, J. A. (2005). Copper bioavailability in a coastal environment of Northern Chile: comparison of bioassay and analytical speciation approaches. Marine Pollution Bulletin, 50, 1363–1372.

    Article  CAS  Google Scholar 

  • Turner, A., Pollock, H., & Brown, M. T. (2009). Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environmental Pollution, 157, 2314–2319.

    Article  CAS  Google Scholar 

  • Torres, M., Barros, M., Campos, S., Pinto, E., Rajamani, S., Sayre, R., & Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicology and Environmental Safety, 71, 1–15.

    Article  CAS  Google Scholar 

  • Ustunada, M., Erdugan, H., Yılmaz, S., Akgul, R., & Aysel, V. (2011). Seasonal concentrations of some heavy metals (Cd, Pb, Zn, and Cu) in Ulvarigida J. Agardh (Chlorophyta) from Dardanelles (Canakkale, Turkey). Environmental Monitoring and Assessment, 177, 337–342.

    Article  CAS  Google Scholar 

  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project No. 28/2009 of the Dirección de Investigación of the Universidad de Valparaíso. Valentina Gaete Paredes for collaboration in the statistical analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Gaete Olivares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaete Olivares, H., Moyano Lagos, N., Jara Gutierrez, C. et al. Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile. Environ Monit Assess 188, 25 (2016). https://doi.org/10.1007/s10661-015-5021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5021-5

Keywords

Navigation