Skip to main content

Advertisement

Log in

Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta, J. A., Faz, A., Martinez-Martinez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behaviour in mine sites for future reclamation. Journal Of Geochemical Exploration, 109, 8–17.

    Article  CAS  Google Scholar 

  • Barrutia, O., Artetxe, U., Hernández, A., Olano, J. M., García-Plazaola, J. I., Garbisu, C., & Becerril, J. M. (2011). Native plant communities in an abandoned Pb-Zn mining area of northern Spain: implications for phytoremediation and germplasm preservation. International Journal of Phytoremediation, 13, 256–270.

    Article  CAS  Google Scholar 

  • Brand, E., Otte, P. F., & Lijzen, J. P. A. CSOIL 2000: an exposure model for human risk assessment of soil contamination. A model description. The Netherlands: RIVM Bilthoven; 2007. RIVM report 711701054.

  • Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., & Xiang, T. S. (2015). Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere, 127, 127–135.

    Article  CAS  Google Scholar 

  • Csathó, P. (1994). Heavy metal contamination of environment and agricultural production. A review. (In Hungarian) MTA TAKI Budapest, 155, 1–176.

    Google Scholar 

  • de Vries, W., Römkens, P. F. A. M., & Schütze, G. (2007). Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Reviews of Environmental Contamination and Toxicology, 191, 91–130.

    Google Scholar 

  • El fadeli, S., Bouhouch, R., El abbassi, A., Chaik, M., Aboussad, A., Chabaa, L., Lekouch, N., Hurrell, R. F., Zimmermann, M. B., & Sedki, A. (2014). Health risk assessment of lead contamination in soil, drinking water and plants from Marrakech urban area, Morocco. Journal of Materials and Environmental Science, 5, 225–230.

    CAS  Google Scholar 

  • El Hamiani, O., El Khalil, H., Lounate, K., Sirguey, C., Hafidi, M., Bitton, G., Schwartz, C., & Boularbah, A. (2010). Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. Journal of Hazardous Materials, 177, 755–761.

    Article  Google Scholar 

  • Falandysz, J. (1993). Some toxic and essential trace metals in cattle from the northern part of Poland. Science of the Total Environment, 135, 177–191.

    Article  Google Scholar 

  • Fang, T., Liu, G., Zhou, G., & Lu, L. (2015). Lead in soil and agricultural products in the Huainan Coal Mining Area, Anhui, China: levels, distribution, and health implications. Environmental Monitoring and Assessment, 187, 152–162.

    Article  Google Scholar 

  • FAO (2000). Infections and intoxications of farm livestock associated with feed and forage. www.fao.org/es/ESN/animal/animapdf7annex-4.pdf

  • Franz, E., Romkens, P., Raamsdonk, L. V., & Fels-Klerx, I. V. D. (2008). A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure. Journal of Food Protection, 71, 2504–2513.

    CAS  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., & Brown, G. G. (1997). Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology, 48, 650–658.

    Article  CAS  Google Scholar 

  • Gough, L. P., & Shacldette, H. T. (1976). Toxicity of selected elements to plants, animals and man—an outline. U. S. Dept. Interior, Geological Survey, Open-File Rep. No. 76-746.

  • Güler, M. (2006). Levels of 24 minerals in local goat milk, its strained yoghurt and salted yoghurt (tuzlu yogurt). In Small Ruminant Research, 71, 130–137.

    Article  Google Scholar 

  • Gutiérrez-Ginés, M. J., Pastor, J., & Hernand A. J. (2015). Heavy metals in native Mediterranean grassland species growing at abandoned mine sites: ecotoxicological assessment and phytoremediation of polluted soils. In Sherameti I, Varma A (Ed.) soil biology 44, Heavy Metal Contamination of Soils Monitoring and Remediation (pp. 159–178). New York: Springer.

  • Houba, V. J. G., Novozamsky, I., Lexmond, T. M., & Van-Der-Lee, J. J. (1990). Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes. Communications in Soil Science and Plant Analysis, 21, 2281–2290.

    Article  CAS  Google Scholar 

  • IARC (2006). International Agency for Research on Cancer, IARC monographs on the evaluation of carcinogenic risks to humans. Inorganic and organic lead compounds. http://monographs.iarc.fr/ENG/Monographs/vol87/mono87.pdf. Accessed 6 Jan 2015.

  • Ikem, A., Shanks, B., Caldwell, J., Garth, J., & Ahuja, S. (2015). Estimating the daily intake of essential and nonessential elements from lamb m. longissimus thoracis et lumborum consumed by the population in Missouri (United States). Journal of Food Composition and Analysis, 40, 126–135.

    Article  CAS  Google Scholar 

  • INE (Instituto Nacional de Estatística) (2006). Balança Alimentar Portuguesa 1990–2003. Portugal: Lisboa.

  • Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Masunaga, S. (2015). Assessment of trace metals in foodstuffs grown around the vicinity of industries in Bangladesh. Journal of Food Composition and Analysis, 42, 8–15.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • JECFA (2010). Summary and conclusions of the seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additive. JECFA/73/SC, Geneva, Switzerland, 2010. http://who.int/foodsafety/publications/chem/summary73.pdf (accessed 01.06.15).

  • JECFA: Joint FAO/WHO Expert Committee on Food Additives (1982). Evaluation of certain food additives and contaminants. Twenty-sixth report of the Joint FAO/WHO expert Committee on Food Additives. Technical Report Series 683, Geneva, Switzerland, 1982. http://whqlibdoc.who.int/trs/WHO_TRS_683.pdf (accessed 01.06.15).

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Madejón, P., Murillo, J. M., Maranón, T., & Cabrera, F. (2006). Bioaccumulation of trace elements in a wild grass three years after the Aznalcóllar mine spill (South Spain). Environmental Monitoring and Assessment, 114, 169–189.

    Article  Google Scholar 

  • Mahaffey, K. R. (1977). Mineral concentrations in animal tissues: certain aspects of FDA’s regulatory role. Journal of Animal Science, 44, 509–515.

    CAS  Google Scholar 

  • Nouri, M., & Haddioui, A. (2015). Assessment of metals contamination and ecological risk in Ait Ammar abandoned iron mine soil, Morocco. Ekologia (submitted: 10-11-15).

  • Nouri, M., Gonçalves, F., Sousa, J. P., Römbke, J., Ksibi, M., Pereira, R., & Haddioui, A. (2013). Metal uptake by spontaneous vegetation in an abandoned iron mine from a semiarid area in center Morocco: implications for phytoextraction. Environmental Research, Engineering and Management, 64, 59–71.

    Article  Google Scholar 

  • Nouri, M., Gonçalves, F., Sousa, J. P., Römbke, J., Ksibi, M., Pereira, R., & Haddioui, A. (2014). Metal concentrations and metal mobility in Ait Ammar Moroccan mining site. Journal of Materials and Environmental Science, 5, 271–280.

    CAS  Google Scholar 

  • ONHYM, The National Office of Hydrocarbons and Mines, http://www.onhym.com/ (visited 06-05-2015).

  • Oyaro, N., Juddy, O., Murago, E. N. M., & Gitonga, E. (2007). The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Journal of Food, Agriculture and Environment, 5, 119–121.

    CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyperaccumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Puls, R. (1988). Mineral levels in animal health: diagnostic data. Clearbook, BC, Canada: Sherpa International.

    Google Scholar 

  • Reykdal, O., Rabieh, S., Steingrimsdottir, L., & Gunnlaugsdottir, H. (2011). Minerals and trace elements in Icelandic dairy products and meat. Journal of Food Composition and Analysis, 24, 980–986.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2012). Soil-plant-animal transfer models to improve soil protection guidelines: a case study from Portugal. Environment International, 39, 27–37.

    Article  CAS  Google Scholar 

  • Sedki, A., Lekouch, N., Gamon, S., & Pineau, A. (2003). Toxic and essential trace metals in muscle, liver and kidney of bovines from a polluted area of Morocco. Science of the Total Environment, 317, 201–205.

    Article  CAS  Google Scholar 

  • Slob, W. (2005). Advies inzake de relatie tussen de herkomst van runderen en het gehalte cadmium in hun nieren. Wageningen, The Netherlands: RIVM-RIKILT Front Office.

    Google Scholar 

  • Smith, K. M., Abrahams, P. W., Dagleish, M. P., & Steigmajer, J. (2009). The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil-metal partitioning and potential availability to pasture herbage and livestock. Science of the Total Environment, 407, 3731–3739.

    Article  CAS  Google Scholar 

  • Stanković, S., Jović, M., Stanković, A. R., & Katsikas, L. (2012). Heavy metals in seafood mussels, risks for human health. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Environmental Chemistry for a Sustainable World (Nanotechnology and Health Risk, Part II, Chapter 9, Vol. 1, pp. 311–373). Netherlands: Springer.

    Chapter  Google Scholar 

  • Underwood, E. J. (1977). Trace elements in human and animal nutrition (4th ed.). New York: Academic.

    Google Scholar 

  • USDA (United States Department of Agriculture) (2012). Composition of foods, raw, processed, prepared, USDA National Nutrient Database for Standard Reference, Release 25. U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory, Beltsville, MD, pp. 2070.

  • WHO (World Health Organization) (1992). Cadmium environmental aspect. Environmental Health Criteria 135. Geneve.

  • WHO (World Health Organization) (1995). Inorganic lead. Environmental Health Criteria 165. Geneve.

  • Williams, P. G. (2007). Nutritional composition of red meat. Nutrition and Dietetics, 64, 113–115.

    Article  Google Scholar 

  • Zhang, S., Li, T., Huang, H., Zou, T., Zhang, X., Yu, H., Zheng, Z., & Wang, Y. (2012). Cd accumulation and phytostabilization potential of dominant plants surrounding mining tailings. Environmental Science and Pollution Research, 19, 3879–3888.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported the North Atlantic Treaty Organization (NATO), Program Science for Peace (Ref. SfP.983311). The authors would like to thank Professor S. Hammada (Faculty of Sciences and Techniques, University of Sultan Moulay Slimane) for aid in plants identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, M., Haddioui, A. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environ Monit Assess 188, 6 (2016). https://doi.org/10.1007/s10661-015-5012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5012-6

Keywords

Navigation