Skip to main content
Log in

Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 μmoles CO2 m−2 s−1 in 2012 and 1.01 to 5.48 μmoles CO2 m−2 s−1 in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6 % in 2012 and 18.5 to 58.6 % in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R 2 = 0.52 to 0.74), SOC % (R 2 = 0.67), pH (R 2 = 0.68), and shrub biomass (R 2 = 0.51), whereas, only a weak positive relationship was found with soil moisture (R 2 = 0.16 to 0.41), tree density (R 2 = 0.25), tree basal area (R 2 = 0.01), tree biomass (R 2 = 0.07), herb biomass (R 2 = 0.01), and forest floor litter (R 2 = 0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akburak, S., & Makineci, E. (2013). Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment, 185, 3349–3358.

    Article  CAS  Google Scholar 

  • Anderson, J.M., & Ingram, J.S.I. (1993). Tropical Soil Biology and Fertility Programme, TSBF Methods Handbook. International Union of Biological Sciences p 77.

  • Bond-Lamberty, B., & Thomson, A. M. (2010). Temperature-associated increases in the global soil respiration record. Nature, 464, 579–582.

    Article  CAS  Google Scholar 

  • Borken, W., Savage, K., Davidson, E. A., & Trumbore, S. (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12, 177–193.

    Article  Google Scholar 

  • Chen, Q., Wang, Q., Han, X., Wan, S., & Li, L. (2010). Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 24, GB2010. doi:10.1029/2009GB003538.

    Article  Google Scholar 

  • Chen, W., Jia, X., Zha, T., Wu, B., Zhang, Y., Li, C., Wang, X., He, G., Yu, H., & Chen, G. (2013). Soil respiration in a mixed urban forest in China in relation to soil temperature and water content. European Journal of Soil Biology, 54, 63–68.

    Article  CAS  Google Scholar 

  • Curiel-Yuste, J., Janssens, I. A., Carrara, A., Meiresonne, L., & Ceulemans, R. (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23(18), 1263–1270.

    Article  CAS  Google Scholar 

  • Davidson, E. A., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4(2), 217–227.

    Article  Google Scholar 

  • Devi, N. B., & Yadava, P. S. (2009). Emission of CO2 from the soil and immobilization of carbon in microbes in a sub-tropical mixed Oak forest ecosystem, Manipur, NE India. Current Science, 96, 1627–1630.

    CAS  Google Scholar 

  • Elliott, E. T., Anderson, R. V., Coleman, D. C., & Cole, C. V. (1980). Habitat pore space and microbial tropic interactions. Oikos, 35, 327–335.

    Article  Google Scholar 

  • F.S.I (2011). State of forest report. Dehradun: Forest Survey of India.

    Google Scholar 

  • Fang, C., & Moncrieff, J. B. (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33(2), 155–165.

    Article  CAS  Google Scholar 

  • Gaumont-Guay, D., Black, T. A., Griffis, T. J., Barr, A. G., Jassal, R. S., & Nesic, Z. (2006). Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agriculture and Forest Meteorology, 140, 220–235.

    Article  Google Scholar 

  • Gough, C. M., & Seiler, J. R. (2004). The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management, 191, 353–363.

    Article  Google Scholar 

  • Gupta, S. R., & Singh, J. S. (1977). Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia, 17, 233–239.

    CAS  Google Scholar 

  • Han, G., Yu, J., Li, H., Yang, L., Wang, G., Mao, P., & Gao, Y. (2012). Winter soil respiration from different vegetation patches in the yellow river delta, China. Environmental Management, 50, 39–49.

    Article  Google Scholar 

  • Harris, D. G., & van Bavel, C. H. M. (1957). Root respiration in tobacco, cotton, corn and cotton plants. Journal of Agronomy, 49, 182–184.

    Article  Google Scholar 

  • IPCC (2007). Climate Change 2007: impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE, Eds. Cambridge p 976.

  • Janssens, I. A., & Pilegaard, K. (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911–918.

    Article  Google Scholar 

  • Joshi, M., Mer, G. S., Singh, S. P., & Rawat, Y. S. (1991). Seasonal pattern of total soil respiration in undisturbed and disturbed ecosystems of Central Himalaya. Biology and Fertility of Soils, 11, 267–272.

    Article  Google Scholar 

  • Kang, S., Doh, S., Lee, D., Jin, V. L., & Kimball, J. S. (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427–1437.

    Article  Google Scholar 

  • Khomik, M., Arain, M. A., & McCaughey, J. H. (2006). Temporal and spatial variability of soil respiration in a boreal mixed wood forest. Agriculture and Forest Meteorology, 140, 244–256.

    Article  Google Scholar 

  • Law, B. E., Ryan, M. G., & Anthoni, P. M. (1999). Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology, 5, 169–182.

    Article  Google Scholar 

  • Lee, M., Mo, W., & Koizumi, H. (2006). Soil respiration of forest ecosystems in Japan and global implications. Ecological Research, 21, 828–839.

    Article  Google Scholar 

  • Lee, N., Koo, J., Noh, N. J., Kim, J., & Son, Y. (2010). Seasonal variation in soil CO2 efflux in evergreen coniferous and broad-leaved deciduous forests in a cool-temperate forest, central Korea. Ecological Research, 25, 609–617.

    Article  Google Scholar 

  • Li, H. J., Yan, J. X., Yue, X. F., & Wang, M. B. (2008). Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agriculture and Forest Meteorology, 148, 490–503.

    Article  Google Scholar 

  • Lin, H., Ruide, L., Jianjun, L., & Lianbin, S. (2008). Soil respiration in Pinus tabulaeformis forest during dormant period at Huoditang forest zone in the Qinling Mountains, China. Acta Ecologica Sinica, 28(9), 4070–4077.

    Article  Google Scholar 

  • Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8(3), 315–323.

    Article  Google Scholar 

  • Luo, J., Chen, Y., Wu, Y., Shi, P., She, J., & Zhou, P. (2012). Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga mountain, China. PloS One, 7(8), e42354. doi:10.1371/journal.pone.0042354.

    Article  CAS  Google Scholar 

  • Mo, W., Lee, M. S., Uchida, M., Inatomi, M., Saigusa, N., Mariko, S., & Koizumi, H. (2005). Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agriculture and Forest Meteorology, 134(1–4), 81–94.

    Article  Google Scholar 

  • Pearson, T., Walker, S. & Brown, S. (2005). Source book for land use, land-use change and forestry. VA, USA: Projects Winrock International. pp. 35.

  • Peters, G. P., Marland, G., Le-Quere, C., Boden, T., Canadell, J. G., & Raupach, M. R. (2012). Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Climate Change, 2, 2–4.

    Article  CAS  Google Scholar 

  • Qi, Y., & Xu, M. (2001). Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant and Soil, 237, 15–23.

    Article  CAS  Google Scholar 

  • Raich, J. W., & Potter, C. S. (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemistry Cycles, 9, 23–36.

    Article  CAS  Google Scholar 

  • Rayment, M. B., & Jarvis, P. G. (2000). Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biogeochemistry, 32, 35–45.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.

    Article  CAS  Google Scholar 

  • Sundarapandian, S. M., & Dar, J. A. (2013). Variation in CO2 efflux in Pinus wallichiana and Abies pindrow temperate forests of western Himalayas, India. Forest Research, 3(1), 116.

    Google Scholar 

  • Tewari, C. K., Pandey, U., & Singh, J. S. (1982). Soil litter respiration rates in different micro-habitats of mixed oak-conifer forest and their control by edaphic conditions and substrate quality. Plant and Soil, 65, 233–238.

    Article  Google Scholar 

  • Thokchom, A., & Yadava, P. S. (2014). Soil CO2 flux in the different ecosystems of North East India. Current Science, 107(1), 99–105.

    CAS  Google Scholar 

  • Tufekcioglu, A., & Kucuk, M. (2004). Soil respiration in young and old oriental spruce stands and in adjacent grasslands in Artvin, Turkey. Turkish Journal of Agriculture and Forestry, 28, 429–434.

    Google Scholar 

  • Valentini, R., Matteucci, G., Dolman, A. J., Schulz, E. D., Rebmann, C., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Gruenwald, T., Aubinet, M., Ceulemans, R., Kowalski, A., Vesala, T., Rannik, U., Berbigier, P., Loustau, D., Gudmundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S., & Jarvis, P. G. (2000). Respiration is the main determinant of carbon balance in European forests. Nature, 404, 861–865.

    Article  CAS  Google Scholar 

  • Vincent, G., Shahriari, A. R., Lucot, E., Badot, P., & Epron, D. (2006). Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biology and Biochemistry, 38, 2527–2535.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37.

    Article  CAS  Google Scholar 

  • Wang, C., Yang, J., & Zhang, Q. (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 2103–2114. doi:10.1111/j.1365-2486.2006.01234.x.

    Article  Google Scholar 

  • Wang, M., Liu, X., Zhang, J., Li, X., Wang, G., Li, X., & Chen, W. (2014). Soil respiration associated with plant succession at the meadow steppe in Songnen plain, northeast China. Journal Plant Ecology, Advance Access Published June 23, 2014, doi:10.1093/jpe/rtu006.

  • Wang, X., Jiang, Y. L., Jia, B. R., Wang, F. Y., & Zhou, G. S. (2010). Comparison of soil respiration among three temperate forests in Changbai mountains, China. Canadian Journal of Forest Research, 40, 788–795.

    Article  Google Scholar 

  • Wu, J., Guan, D., Wang, M., Pei, T., Han, S., & Jin, C. (2006). Year-round soil and ecosystem respiration in a temperate broad-leaved Korean Pine forest. Forest Ecology and Management, 223, 35–44.

    Article  Google Scholar 

  • Yi, Z., Fu, S., Yi, Y., Zhou, G., Mo, J., Zhang, D., Ding, M., Wang, X., & Zhou, L. (2007). Partitioning soil respiration of subtropical forests with different successional stages in south China. Forest Ecology and Management, 243, 178–186.

    Article  Google Scholar 

  • Zhang, L., Chen, Y., Zhao, R., & Li, W. (2010). Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. Journal of Arid Environments, 74, 1200–1211.

    Article  Google Scholar 

  • Zheng, Z. M., Yu, G. R., Fu, Y. L., Wang, Y. S., Sun, X. M., & Wang, Y. H. (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology and Biochemistry, 41, 1531–1540.

    Article  CAS  Google Scholar 

  • Zhou, Z., Guo, C., & Meng, H. (2013). Temperature sensitivity and basal rate of soil respiration and their determinants in temperate forests of north China. PloS One, 8(12), e81793. doi:10.1371/journal.pone.0081793.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial assistance provided by University Grants Commission (UGC), Government of India for its fellowship and Forest Departments of Anantnag and Lidder Divisions, Jammu and Kashmir, India for permission and help during field work. We also thank Dr. S. Jayakumar, Associate Professor, Department of Ecology and Environmental Sciences, Pondicherry University for preparing the study area map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Ethics declarations

The first author, Dr. Javid Ahmad Dar, received fellowship from Pondicherry University, which was funded by UGC that was acknowledged. The first author executed the field work in Kashmir Himalaya and devoted full time in the preparation of manuscript with the other two co-authors. The second author, Dr. Khursheed Ahmad Ganie, helped in fieldwork besides providing all the facilities required for this research. The third author, Dr. SM. Sundarapandian, is the Research Supervisor, who is involved in planning and designing the experiments, besides preparing the manuscript.

This work has not been published previously or currently submitted for publication elsewhere.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, J.A., Ganie, K.A. & Sundarapandian, S. Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India. Environ Monit Assess 187, 715 (2015). https://doi.org/10.1007/s10661-015-4927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4927-2

Keywords

Navigation