Skip to main content

Advertisement

Log in

Analyzing nonlinear variations in terrestrial vegetation in China during 1982–2012

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Quantifying the long-term trends of changes in terrestrial vegetation on a large scale is an effective method for detecting the effects of global environmental change. In view of the trend towards overall restoration and local degradation of terrestrial vegetation in China, it is necessary to pay attention to the spatial processes of vegetative restoration or degradation, as well as to clarify the temporal and spatial characteristics of vegetative growth in greater geographical detail. However, traditional linear regression analysis has some drawbacks when describing ecological processes. Combining nonparametric linear regression analysis with high-order nonlinear fitting, the temporal and spatial characteristics of terrestrial vegetative growth in China during 1982–2012 were detected using the third generation of Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset. The results showed that high-order curves could be effective. The region joining Ordos City and Shaanxi Gansu Ningxia on the Loess Plateau may have experienced restoration–degradation–restoration processes of vegetative growth. In the Daloushan Mountains, degradation–restoration processes of vegetative growth may have occurred, and the occurrence of several hidden vegetative growth processes was located in different regions of eastern China. Changes in cultivated vegetation were inconsistent with changes in other vegetation types. In southern China and some high-altitude areas, temperature was the primary driver of vegetative growth on an interannual scale, while in the north, the effect of rainfall was more significant. Nevertheless, the influence of climate on vegetation activity in large urban areas was weak. The trend types of degradation–restoration processes in several regions were inconsistent with the implements of regional land development and protection strategy. Thus, the role of human activity cannot be ignored. In future studies, it will be still necessary to quantify the effects of human management on spatial patterns, develop trend-fitting methods, and explore more refined methods of analyzing the driving forces affecting large-scale changes in vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beck, H. E., McVicar, T. R., van Dijk, A. I. J. M., Schellekens, J., de Jeu, R. A. M., & Bruijnzeel, L. A. (2011). Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 115(10), 2547–2563. doi:10.1016/j.rse.2011.05.012.

    Article  Google Scholar 

  • Cao, S. X., Ma, H., Yuan, W. P., & Wang, X. (2014). Interaction of ecological and social factors affects vegetation recovery in China. Biological Conservation, 180, 270–277. doi:10.1016/j.biocon.2014.10.009.

    Article  Google Scholar 

  • Cao, S. X., Sun, G., Zhang, Z. Q., Chen, L. D., Feng, Q., Fu, B. J., et al. (2011). Greening China naturally. Ambio, 40(7), 828–831. doi:10.1007/s13280-011-0150-8.

    Article  Google Scholar 

  • Chazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. doi:10.1126/science.1155365.

    Article  CAS  Google Scholar 

  • Cui, L. L., & Shi, J. (2010). Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. Journal of Geographical Sciences, 20(2), 163–176. doi:10.1007/s11442-010-0163-4.

    Article  Google Scholar 

  • de Jong, R., Schaepman, M. E., Furrer, R., de Bruin, S., & Verburg, P. H. (2013). Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 19(6), 1953–1964. doi:10.1111/gcb.12193.

    Article  Google Scholar 

  • Du, J. Q., Shu, J. M., Yin, J. Q., Yuan, X. J., Jiaerheng, A., Xiong, S. S., et al. (2015). Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. International Journal of Applied Earth Observation and Geoinformation, 38, 216–228. doi:10.1016/j.jag.2015.01.006.

    Article  Google Scholar 

  • Fang, J. Y., Piao, S. L., He, J. S., & Ma, W. H. (2004). Increasing terrestrial vegetation activity in China, 1982–1999. Science In China Series C-Life Sciences, 47(3), 229–240. doi:10.1360/03yc0068.

    Google Scholar 

  • Fensholt, R., & Proud, S. R. (2012). Evaluation of earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131–147. doi:10.1016/j.rse.2011.12.015.

    Article  Google Scholar 

  • Gao, Y. H., Zhou, X., Wang, Q., Wang, C. Z., Zhan, Z. M., Chen, L. F., et al. (2013). Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Science of the Total Environment, 444, 356–362. doi:10.1016/j.scitotenv.2012.12.014.

    Article  CAS  Google Scholar 

  • Guay, K. C., Beck, P. S. A., Berner, L. T., Goetz, S. J., Baccini, A., & Buermann, W. (2014). Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Global Change Biology, 20(10), 3147–3158. doi:10.1111/Gcb.12647.

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. doi:10.1126/science.1244693.

    Article  CAS  Google Scholar 

  • He, C., Tian, J., Gao, B., & Zhao, Y. (2015). Differentiating climate- and human-induced drivers of grassland degradation in the Liao River basin, China. Environmental Monitoring and Assessment, 187(1), 4199. doi:10.1007/s10661-014-4199-2.

    Article  Google Scholar 

  • Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176), 289–292. doi:10.1038/Nature06591.

    Article  CAS  Google Scholar 

  • Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232–235. doi:10.1126/science.1210657.

    Article  CAS  Google Scholar 

  • Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–1434.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. doi:10.1016/S0034-4257(02)00096-2.

    Article  Google Scholar 

  • Jamali, S., Seaquist, J., Eldundh, L., & Ardo, J. (2014). Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sensing of Environment, 141, 79–89. doi:10.1016/j.rse.2013.10.019.

    Article  Google Scholar 

  • Kefi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., ElAich, A., et al. (2007). Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449(7159), 213–217. doi:10.1038/Nature06111.

    Article  CAS  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  • Lü, Y. H., Ma, Z. M., Zhang, L. W., Fu, B. J., & Gao, G. Y. (2013). Redlines for the greening of China. Environmental Science & Policy, 33, 346–353. doi:10.1016/j.envsci.2013.05.007.

    Article  Google Scholar 

  • Lü, Y. H., Zhang, L. W., Feng, X. M., Zeng, Y., Fu, B. J., Yao, X. L., et al. (2015). Recent ecological transitions in China: greening, browning, and influential factors. Scientific Reports, 5.

  • Li, A., Wu, J. G., & Huang, J. H. (2012). Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia. Landscape Ecology, 27(7), 969–982. doi:10.1007/s10980-012-9751-2.

    Article  CAS  Google Scholar 

  • Li, F., Zeng, Y., Li, X. S., Zhao, Q. J., & Wu, B. F. (2014). Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009. Science China-Earth Sciences, 57(8), 1800–1806. doi:10.1007/s11430-014-4883-7.

    Article  Google Scholar 

  • Li, S., Yang, S., Liu, X., Liu, Y., & Shi, M. (2015). NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region, Central China. Remote Sensing, 7(9), 11163–11182. doi:10.3390/rs70911163.

    Article  Google Scholar 

  • Li, S. S., Yan, J. P., Liu, X. Y., & Wan, J. (2013). Response of vegetation restoration to climate change and human activities in Shaanxi-Gansu-Ningxia region. Journal of Geographical Sciences, 23(1), 98–112. doi:10.1007/s11442-013-0996-8.

    Article  CAS  Google Scholar 

  • Li, W. J., & Lu, C. H. (2015). Aridity trend and response to vegetation restoration in the loess hilly region of northern Shaanxi Province. Journal of Geographical Sciences, 25(3), 289–300. doi:10.1007/s11442-015-1168-9.

    Article  Google Scholar 

  • Liu, J. G., Li, S. X., Ouyang, Z. Y., Tam, C., & Chen, X. D. (2008). Ecological and socioeconomic effects of China’s policies for ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9477–9482. doi:10.1073/pnas.0706436105.

    Article  CAS  Google Scholar 

  • Liu, S., & Gong, P. (2012). Change of surface cover greenness in China between 2000 and 2010. Chinese Science Bulletin, 57(22), 2835–2845. doi:10.1007/s11434-012-5267-z.

    Article  Google Scholar 

  • Liu, X. F., Zhang, J. S., Zhu, X. F., Pan, Y. Z., Liu, Y. X., Zhang, D. H., et al. (2014a). Spatiotemporal changes in vegetation coverage and its driving factors in the three-river Headwaters region during 2000–2011. Journal of Geographical Sciences, 24(2), 288–302. doi:10.1007/s11442-014-1088-0.

    Article  Google Scholar 

  • Liu, X. F., Zhu, X. F., Zhu, W. Q., Pan, Y. Z., Zhang, C., & Zhang, D. H. (2014b). Changes in spring phenology in the three-rivers Headwater region from 1999 to 2013. Remote Sensing, 6(9), 9130–9144. doi:10.3390/Rs6099130.

    Article  Google Scholar 

  • Liu, Y. X., Wang, Y. L., Peng, J., Du, Y. Y., Liu, X. F., Li, S. S., et al. (2015). Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sensing, 7(2), 2067–2088. doi:10.3390/rs70202067.

    Article  Google Scholar 

  • Mu, S. J., Yang, H. F., Li, J. L., Chen, Y. Z., Gang, C. C., Zhou, W., et al. (2013). Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2), 231–246. doi:10.1007/s11442-013-1006-x.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698–702. doi:10.1038/386698a0.

    Article  CAS  Google Scholar 

  • Niedertscheider, M., Gingrich, S., & Erb, K. H. (2012). Changes in land use in South Africa between 1961 and 2006: an integrated socio-ecological analysis based on the human appropriation of net primary production framework. Regional Environmental Change, 12(4), 715–727. doi:10.1007/s10113-012-0285-6.

    Article  Google Scholar 

  • Nowacki, G. J., & Abrams, M. D. (2015). Is climate an important driver of post-European vegetation change in the eastern United States? Global Change Biology, 21(1), 314–334. doi:10.1111/Gcb.12663.

    Article  Google Scholar 

  • Peng, J., Liu, Z. H., Liu, Y. H., Wu, J. S., & Han, Y. A. (2012). Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent. Ecological Indicators, 14(1), 28–39. doi:10.1016/j.ecolind.2011.08.011.

    Article  Google Scholar 

  • Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., et al. (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 21(4), 1601–1609. doi:10.1111/gcb.12795.

    Article  Google Scholar 

  • Piao, S. L., Wang, X. H., Ciais, P., Zhu, B., Wang, T., & Liu, J. (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10), 3228–3239. doi:10.1111/j.1365-2486.2011.02419.x.

    Article  Google Scholar 

  • Purves, D., & Pacala, S. (2008). Predictive models of forest dynamics. Science, 320(5882), 1452–1453. doi:10.1126/science.1155359.

    Article  CAS  Google Scholar 

  • Qiu, B. W., Zeng, C. Y., Tang, Z. H., & Chen, C. C. (2013). Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset. Environmental Monitoring and Assessment, 185(11), 9019–9035. doi:10.1007/s10661-013-3231-2.

    Article  Google Scholar 

  • Scheftic, W., Zeng, X. B., Broxton, P., & Brunke, M. (2014). Intercomparison of seven NDVI products over the United States and Mexico. Remote Sensing, 6(2), 1057–1084. doi:10.3390/Rs6021057.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Tian, H. J., Cao, C. X., Chen, W., Bao, S. N., Yang, B., & Myneni, R. B. (2015). Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, 82, 276–289. doi:10.1016/j.ecoleng.2015.04.098.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. doi:10.1016/0034-4257(79)90013-0.

    Article  Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498. doi:10.1080/01431160500168686.

    Article  Google Scholar 

  • Wischnewski, J., Kramer, A., Kong, Z. C., Mackay, A. W., Simpson, G. L., Mischke, S., et al. (2011). Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries. Global Change Biology, 17(11), 3376–3391. doi:10.1111/j.1365-2486.2011.02474.x.

    Article  Google Scholar 

  • Wu, D. H., Zhao, X., Liang, S. L., Zhou, T., Huang, K. C., Tang, B. J., et al. (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21(9), 3520–3531. doi:10.1111/gcb.12945.

    Article  Google Scholar 

  • Wu, Z. T., Wu, J. J., Liu, J. H., He, B., Lei, T. J., & Wang, Q. F. (2013). Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China. Ecological Engineering, 52, 37–50. doi:10.1016/j.ecoleng.2012.12.040.

    Article  Google Scholar 

  • Xiao, J. F. (2014). Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. Journal of Geophysical Research-Biogeosciences, 119(12), 2261–2275. doi:10.1002/2014jg002820.

    Article  Google Scholar 

  • Xie, Y. Y., Ahmed, K. F., Allen, J. M., Wilson, A. M., & Silander, J. A. (2015). Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landscape Ecology, 30(1), 109–123. doi:10.1007/s10980-014-0099-7.

    Article  Google Scholar 

  • Xin, Z. B., Xu, J. X., & Zheng, W. (2008). Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): impacts of climate changes and human activities. Science in China Series D-Earth Sciences, 51(1), 67–78. doi:10.1007/s11430-007-0137-2.

    Article  Google Scholar 

  • Xu, G., Zhang, H., Chen, B., Zhang, H., Innes, J., Wang, G., et al. (2014). Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sensing, 6(4), 3263–3283. doi:10.3390/rs6043263.

    Article  Google Scholar 

  • Yin, F., Deng, X. Z., Jin, Q., Yuan, Y. W., & Zhao, C. H. (2014). The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Frontiers of Earth Science, 8(1), 93–103. doi:10.1007/s11707-013-0390-y.

    Article  Google Scholar 

  • Zhang, X. Y. (2015). Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sensing of Environment, 156, 457–472. doi:10.1016/j.rse.2014.10.012.

    Article  Google Scholar 

  • Zhang, X. Z., Dai, J. H., & Ge, Q. S. (2013). Variation in vegetation greenness in spring across eastern China during 1982–2006. Journal of Geographical Sciences, 23(1), 45–56. doi:10.1007/s11442-013-0992-z.

    Article  Google Scholar 

  • Zhang, X. Z., Wang, W. C., Fang, X. Q., Ye, Y., & Zheng, J. Y. (2011). Vegetation of northeast China during the late seventeenth to early twentieth century as revealed by historical documents. Regional Environmental Change, 11(4), 869–882. doi:10.1007/s10113-011-0224-y.

    Article  Google Scholar 

  • Zhang, Y. L., Song, C. H., Zhang, K. R., Cheng, X. L., Band, L. E., & Zhang, Q. F. (2014). Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River basin, China, from 2001 to 2010. Journal of Geophysical Research-Biogeosciences, 119(6), 1092–1109. doi:10.1002/2014jg002616.

    Article  Google Scholar 

  • Zhou, D. C., Zhao, S. Q., Liu, S. G., & Zhang, L. X. (2014). Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Science of the Total Environment, 488, 136–145.

    Article  Google Scholar 

  • Zhou, S., Huang, Y. F., Yu, B. F., & Wang, G. Q. (2015). Effects of human activities on the eco-environment in the middle Heihe River basin based on an extended environmental Kuznets curve model. Ecological Engineering, 76, 14–26. doi:10.1016/j.ecoleng.2014.04.020.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (41330747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanglin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Hu, Y. et al. Analyzing nonlinear variations in terrestrial vegetation in China during 1982–2012. Environ Monit Assess 187, 722 (2015). https://doi.org/10.1007/s10661-015-4922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4922-7

Keywords

Navigation