Skip to main content
Log in

Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper evaluated the spatiotemporal non-stationarity in the vegetation dynamic based on 1-km resolution 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) datasets in China during 2001–2011 through a wavelet transform method. First, it revealed from selected pixels that agricultural crops, natural forests, and meadows were characterized by their distinct intra-annual temporal variation patterns in different climate regions. The amplitude of intra-annual variability generally increased with latitude. Second, parameters calculated using a per-pixel strategy indicated that the natural forests had the strongest variation pattern from seasonal to semiannual scales, and the multiple-cropping croplands typically showed almost equal variances distributed at monthly, seasonal, and semiannual scales. Third, spatiotemporal non-stationarity induced from cloud cover was also evaluated. It revealed that the EVI temporal profiles were significantly distorted with regular summer cloud cover in tropical and subtropical regions. Nevertheless, no significant differences were observed from those statistical parameters related to the interannual and interannual components between the de-clouded and the original MODIS EVI datasets across the whole country. Finally, 12 vegetation zones were proposed based on spatiotemporal variability, as indicated by the magnitude of interannual and intra-annual dynamic components, normalized wavelet variances of detailed components from monthly to semiannual scale, and proportion of cloud cover in summer. This paper provides insightful solutions for addressing spatiotemporal non-stationarity by evaluating the magnitude and frequency of vegetation variability using monthly, seasonal, semiannual to interannual scales across the whole study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arvor, D., Jonathan, M., Meirelles, M. S. P., Dubreuil, V., & Durieux, L. (2011). Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. International Journal of Remote Sensing, 32(22), 7847–7871. doi:10.1080/01431161.2010.531783.

    Article  Google Scholar 

  • Biradar, C. M., & Xiao, X. (2011). Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. International Journal of Remote Sensing, 32(2), 367–386. doi:10.1080/01431160903464179.

    Article  Google Scholar 

  • Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005.

    Article  Google Scholar 

  • Donohue, R. J., McVicar, T. R., & Roderick, M. L. (2009). Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Global Change Biology, 15(4), 1025–1039. doi:10.1111/j.1365-2486.2008.01746.x.

    Article  Google Scholar 

  • Galford, G. L., Mustard, J. F., Melillo, J., Gendrin, A., Cerri, C. C., & Cerri, C. E. P. (2008). Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 112(2), 576–587.

    Article  Google Scholar 

  • Gao, Y., Huang, J., Li, S., & Li, S. (2012). Spatial pattern of non-stationarity and scale-dependent relationships between NDVI and climatic factors- a case study in Qinghai-Tibet Plateau, China. Ecological Indicators, 20, 170–176.

    Article  Google Scholar 

  • Hao, F., Zhang, X., Ouyang, W., Skidmore, A., & Toxopeus, A. (2012). Vegetation NDVI linked to temperature and Precipitation in the Upper Catchments of Yellow River. Environmental Modeling and Assessment, 17, 389–398. doi:10.1007/s10666-011-9297-8.

    Google Scholar 

  • Hou, X., Li, M., Gao, M., Yu, L., & Bi, X. (2013). Spatial–temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components. Environmental Monitoring and Assessment, 185, 267–277. doi:10.1007/s10661-012-2551-y.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.

    Article  Google Scholar 

  • Jiang, L., Zhou, D., Zhao, X., & Fang, J. (2012). Satellite-indicated variations in China's forests from 2001 to 2009. Forest Science and Technology, 8(2), 77–82. doi:10.1080/21580103.2012.672046.

    Article  Google Scholar 

  • Julien, Y., & Sobrino, J. A. (2009). Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30(13), 3495–3513.

    Article  Google Scholar 

  • Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., et al. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. Geoscience and Remote Sensing, IEEE Transactions on, 36(4), 1228–1249.

    Article  Google Scholar 

  • Klein, I., Gessner, U., & Kuenzer, C. (2012). Regional land cover mapping and change detection in Central Asia using MODIS time-series. Applied Geography, 35(1–2), 219–234.

    Article  Google Scholar 

  • Li, Z., Yang, P., Wang, Y., Zhou, Q., Tang, H., Chang, H., et al. (2012). Agricultural landscape dynamics and its response in seasonal vegetation activities in the Loess Plateau, Northern Shaanxi, China. Computer and Computing Technologies in Agriculture V, 369, 151–167. IFIP Advances in Information and Communication Technology); Springer, Boston.

    Article  Google Scholar 

  • Liang, S., Ge, S., Wan, L., & Xu, D. (2012). Characteristics and causes of vegetation variation in the source regions of the Yellow River, China. International Journal of Remote Sensing, 33(5), 1529–1542. doi:10.1080/01431161.2011.582187.

    Article  Google Scholar 

  • Liu, W., Cai, T., Ju, C., Fu, G., Yao, Y., & Cui, X. (2011). Assessing vegetation dynamics and their relationships with climatic variability in Heilongjiang province, northeast China. Environmental Earth Sciences, 64(8), 2013–2024. doi:10.1007/s12665-011-1021-0.

    Article  Google Scholar 

  • Lunetta, R. S., Ediriwickrema, J., Johnson, D. M., Lyon, J. G., & McKerrow, A. (2002). Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA. Remote Sensing of Environment, 82(2), 258–270.

    Article  Google Scholar 

  • Lunetta, R. S., Shao, Y., Ediriwickrema, J., & Lyon, J. G. (2010). Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. International Journal of Applied Earth Observation and Geoinformation, 12(2), 81–88.

    Article  Google Scholar 

  • Ma, T., & Zhou, C. (2012). Climate-associated changes in spring plant phenology in China. International Journal of Biometeorology, 56(2), 269–275. doi:10.1007/s00484-011-0428-3.

    Article  Google Scholar 

  • Mao, D., Wang, Z., Luo, L., & Ren, C. (2012). Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation, 18, 528–536. doi:10.1016/j.jag.2011.10.007.

    Article  Google Scholar 

  • Martínez, B., & Gilabert, M. A. (2009). Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 113(9), 1823–1842.

    Article  Google Scholar 

  • Martínez, B., Gilabert, M. A., García-Haro, F. J., Faye, A., & Meliá, J. (2011). Characterizing land condition variability in Ferlo, Senegal (2001–2009) using multi-temporal 1-km Apparent Green Cover (AGC) SPOT Vegetation data. Global and Planetary Change, 76(3–4), 152–165. doi:10.1016/j.gloplacha.2011.01.001.

    Article  Google Scholar 

  • Meyer, J. P., Allen, N. J., & Smith, C. A. (1993). Commitment to organizations and occupations: extension and test of a three-component conceptualization. Journal of Applied Psychology, 78(4), 538.

    Article  Google Scholar 

  • Nuarsa, I. W., Nishio, F., Hongo, C., & Mahardika, I. G. (2012). Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia. International Journal of Remote Sensing, 33(17), 5402–5417. doi:10.1080/01431161.2012.661091.

    Article  Google Scholar 

  • Pagano, T. S., & Durham, R. M. (1993). Moderate resolution imaging spectroradiometer (MODIS). SPIE, 1939, 2–17.

    Article  Google Scholar 

  • Peng, J., Liu, Z., Liu, Y., Wu, J., & Han, Y. (2012). Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1), 28–39.

    Article  Google Scholar 

  • Peng, S., Chen, A., Xu, L., Cao, C., Fang, J., Myneni, R. B., et al. (2011). Recent change of vegetation growth trend in China. Environmental Research Letters, 6, 044027.

    Article  Google Scholar 

  • Percival, D. B., Wang, M., & Overland, J. E. (2004). An introduction to wavelet analysis with applications to vegetation time series. Community Ecology, 5(1), 19–30. doi:10.1556/ComEc.5.2004.1.3.

    Article  Google Scholar 

  • Piao, S. L., Cui, M., Chen, A., Wang, X., Ciais, P., Liu, J., et al. (2012). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151(12), 1599–1608.

    Article  Google Scholar 

  • Piao, S. L., Fang, J., Ji, W., Guo, Q., Ke, J., Tao, S., et al. (2004). Variation in a satellite-based vegetation index in relation to climate in China. Journal of Vegetation Science, 15(2), 219–226.

    Article  Google Scholar 

  • Piao, S. L., Mohammat, A., Fang, J., Cai, Q., & Feng, J. (2006). NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4), 340–348.

    Article  Google Scholar 

  • Pineda Jaimes, N. B., Sendra, J. B., Delgado, M. G., & Franco Plata, R. (2010). Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30(4), 576–591.

    Article  Google Scholar 

  • Poças, I., Cunha, M., & Pereira, L. S. (2012). Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data. International Journal of Remote Sensing, 33(14), 4334–4355. doi:10.1080/01431161.2011.645084.

    Article  Google Scholar 

  • Propastin, P. (2011). Multiscale analysis of the relationship between topography and aboveground biomass in the tropical rainforests of Sulawesi, Indonesia. International Journal of Geographical Information Science, 25(3), 455–472. doi:10.1080/13658816.2010.518570.

    Article  Google Scholar 

  • Propastin, P. (2012). Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 18, 82–90.

    Article  Google Scholar 

  • Qiu, B., Zhong, M., Zeng, C., Tang, Z., & Chen, C. (2012). Effect of topography and accessibility on vegetation dynamic pattern in mountain-hill region. Journal of Mountain Science, 9(6), 879–890.

    Article  Google Scholar 

  • Ren, Y., Li, X., Lu, L., & Li, Z. (2012). Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. International Journal of Geographical Information Science, 26(1), 169–191.

    Article  Google Scholar 

  • Rioul, O., & Vetterli, M. (1991). Wavelets and signal processing. Signal Processing Magazine, IEEE, 8(4), 14–38.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Setiawan, Y., Yoshino, K., & Philpot, W. D. (2011). Characterizing temporal vegetation dynamics of land use in regional scale of Java Island, Indonesia. Journal of Land Use Science, 8(1), 1–30. doi:10.1080/1747423x.2011.605178.

    Article  Google Scholar 

  • Singh, A., Dutta, R., Stein, A., & Bhagat, R. M. (2012). A wavelet-based approach for monitoring plantation crops (tea: Camellia sinensis) in North East India. International Journal of Remote Sensing, 33(16), 4982–5008.

    Article  Google Scholar 

  • Sun, H., Xu, A., Lin, H., Zhang, L., & Mei, Y. (2012). Winter wheat mapping using temporal signatures of MODIS vegetation index data. International Journal of Remote Sensing, 33(16), 5026–5042. doi:10.1080/01431161.2012.657366.

    Article  Google Scholar 

  • Wang, J., Meng, J. J., & Cai, Y. L. (2008). Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environmental Geology, 54(6), 1185–1195.

    Article  Google Scholar 

  • Waring, R. H., Coops, N. C., Fan, W., & Nightingale, J. M. (2006). MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous USA. Remote Sensing of Environment, 103(2), 218–226.

    Article  Google Scholar 

  • Wei, H., Heilman, P., Qi, J., Nearing, M., Gu, Z., & Zhang, Y. (2012). Assessing phenological change in China from 1982 to 2006 using AVHRR imagery. Frontiers of Earth Science, 6(3), 227–236. doi:10.1007/s11707-012-0321-3.

    Article  Google Scholar 

  • Yang, Y., Xu, J., Hong, Y., & Lv, G. (2012). The dynamic of vegetation coverage and its response to climate factors in Inner Mongolia, China. Stochastic Environmental Research and Risk Assessment, 26(3), 357–373. doi:10.1007/s00477-011-0481-9.

    Article  Google Scholar 

  • Zhang, G., Dong, J., Xiao, X., Hu, Z., & Sheldon, S. (2012). Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, 38(1), 20–29.

    Article  Google Scholar 

  • Zhang, M., Zhou, Q., Chen, Z., Liu, J., Zhou, Y., & Cai, C. (2008). Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. International Journal of Applied Earth Observation and Geoinformation, 10(4), 476–485.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received for this work from the National Natural Science Foundation of China (NSFC) (grant no. 41071267), Scientific Research Foundation for Returned Scholars ([2012]940), Ministry of Education of China, and the Science Foundation of Fujian Province (grant no. 2012I0005, 2012J01167). We are also thankful for the three anonymous reviewers that offered valuable suggestions to help improve this manuscript. The authors would like to thank NASA LP DAAC for providing public-accessing to the MODIS data. The 1-km land cover distribution map of China was provided by Environmental and Ecological Science Data Center for West China at National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwen Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, B., Zeng, C., Tang, Z. et al. Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset. Environ Monit Assess 185, 9019–9035 (2013). https://doi.org/10.1007/s10661-013-3231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3231-2

Keywords

Navigation