Skip to main content
Log in

Variation in Populus euphratica foliar carbon isotope composition and osmotic solute for different groundwater depths in an arid region of China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water use efficiency (WUE) is an important trait associated with plant acclimation caused by water deficits, and δ13C is a good surrogate of WUE under conditions of water deficits. Water deficiency also enhances the accumulation of compatible solutes in the leaves. In this study, variations in foliar δ13C values and main osmotic solutes were investigated. Those included total soluble sugar (TSS), sucrose, free proline, glycine betaine (GB), and inorganic ionic (K+, Ca2+, and Cl) content of Populus euphratica for different groundwater depths in a Ejina desert riparian forest, China. Results indicated that foliar δ13C values in the P. euphratica for different groundwater depths ranged from −29.14 ± 0.06 to −25.84 ± 0.04 ‰. Foliar δ13C signatures became richer as groundwater levels declined. TSS, sucrose, free proline, GB, and K+ were accumulated in P. euphratica foliage with developing plant growth and increasing groundwater depth. Ca2+ and Cl content increased under stronger P. euphratica transpiration rates for shallower groundwater depths (1–2.5 m) and decreased for deeper groundwater depths (greater than 3.0 m). Moreover, correlations between δ13C, osmotic solutes, and groundwater depths showed that the primary osmotic solutes were TSS, sucrose, proline, GB, and K+. Correlations also showed that δ13C was not only a useful measure for P. euphratica-integrated WUE but also could be used as an indicator reflecting some physiological osmotic indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamec, L. (2002). Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytol, 155, 89–100.

    Article  CAS  Google Scholar 

  • Andersen, M. N., Jensen, C. R., & Losch, R. (1992). The interaction effects of potassium and drought in field-grown barley: I. yield, water-use efficiency and growth. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 42, 34–44.

    CAS  Google Scholar 

  • Bano, A., Rehman, A., & Winiger, M. (2009). Altitudinal variation in the content of protein, proline, sugar and abscisic acid (aba) in the alpine herbs from hunza valley, Pakistan. Pak J Bot, 41, 1593–1602.

    CAS  Google Scholar 

  • Barker, D. J., Sullivan, C. Y., & Moser, L. E. (1993). Water deficit effects on osmotic potential, cell wall elasticity, and proline in five forage grasses. Agron J, 85, 270–275.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Blackman, S. A. (1992). Maturation proteins and sugars in desiccation-tolerance of developing soybean seeds. Plant Physiol, 100, 225–230.

    Article  CAS  Google Scholar 

  • Carvajal, M., Martinez, V., & Alcaraz, C. F. (1999). Physiological function of water-channels, as affected by salinity in roots of paprika pepper. Physiol Plant, 105, 95–101.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol, 30, 239–264.

    Article  CAS  Google Scholar 

  • Chen, Y. N., Chen, Y. P., & Li, W. H. (2003). Response of proline accumulation to the change of groundwater table in lower reaches of tarim river. Chin Sci Bull, 48, 958–961.

    Google Scholar 

  • Chen, Y., & Burris, J. S. (1990). Roles of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Crop Sci, 30, 971–975.

    Article  CAS  Google Scholar 

  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2002). Improving water-use efficiency and crop yield. Crop Sci, 42, 122–132.

    Article  Google Scholar 

  • Cushman, J. C. (2001). Osmoregulation in plants: implications for agriculture. Am Zool, 41, 758–769.

    CAS  Google Scholar 

  • Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annu Rev Ecol Syst, 33, 507–559.

    Article  Google Scholar 

  • Damesin, C., & Lelarge, C. (2003). Carbon isotope composition of current year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell and Environment, 26, 207–219.

    Article  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Anal Chem, 28, 350–356.

    Article  CAS  Google Scholar 

  • Evans, R. D., Black, R. A., Loescher, W. H., & Fellows, R. J. (1992). Osmotic relation of the drought-tolerant shrub artemesia tridentata in response to water stress. Plant, Cell and Environment, 15, 49–59.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., O’Leary, M. H., & Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol, 9, 121–137.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 40, 503–537.

    Article  CAS  Google Scholar 

  • Francisco, Z. A., Pawela, L. N., & Mark, B. (2001). Regeneration of native trees in response to flood releases from the united states into the delta of the Colorado River, Mexico. J Arid Environ, 49, 49–64.

    Article  Google Scholar 

  • Gao, T. P., Chen, T., Feng, H. Y., An, L. Z., Xu, S. J., & Wang, X. L. (2006). Seasonal and annual variation of osmotic solute and stable carbon isotope composition in leaves of endangered desert evergreen shrub Ammopiptanthus mongolicus. S Afr J Bot, 72, 570–578.

    Article  CAS  Google Scholar 

  • Garten, C. T., & Taylor, G. E. (1992). Foliar δ13C within a temperate deciduous forest: spatial, temporal and species sources of variation. Oecologia, 90, 1–7.

    Article  Google Scholar 

  • Guerrier, G., & Patolia, J. S. (1989). Comparative salt responses of excised cotyledons and seedlings of pea to various osmotic and ionic stresses. J Plant Physiol, 135, 330–337.

    Article  CAS  Google Scholar 

  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 31, 149–190.

    Article  CAS  Google Scholar 

  • Handa, S., Handa, A. K., Paul, M. H., & Ray, A. E. (1986). Proline accumulation and the adoption of cultured plant cells to water stress. Plant Physiol, 80, 938–945.

    Article  CAS  Google Scholar 

  • Helle, G., & Schleser, G. H. (2004). Beyond CO2-fixation by Rubisco—an interpretation of C-13/C-12 variations in tree rings from novel intraseasonal studies on broad-leaf trees. Plant, Cell Environment, 27, 367–380.

    Article  CAS  Google Scholar 

  • Issac, R. A. (1980). Atomic absorption methods for analysis of soil extracts and plant tissue digests. Journal of Analytical Chemistry, 63, 793–799.

    Google Scholar 

  • Khan, M. A., Shirazi, M. U., Ali Khan, M., Mujtaba, S. M., Islam, E., Mumtaz, S., Shereen, A., & Yasin Ashraf, M. (2009). Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivuml.). Pak J Bot, 41, 633–638.

    Google Scholar 

  • Liu, W., Wang, Z. J., & Xi, H. Y. (2008). Variations of physical and chemical properties of water and soil and their significance to ecosystem in the lower reaches of Heihe River. J Glaciol Geocryol, 30, 688–696 (In Chinese).

    Google Scholar 

  • Ludlow, M. M., Santamaria, J. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water limited conditions. II. water stress after anthesis. Aust J Agric Res, 41, 67–78.

    Article  Google Scholar 

  • Ma, T. J., Liu, Q. L., Li, Z., & Zhang, X. J. (2002). Tonoplast H+-ATPase in response to salt stress in Populus euphratica cell suspensions. Plant Sci, 163, 499–505.

    Article  CAS  Google Scholar 

  • Maggio, A., Reddy, M. P., & Joly, R. J. (2000). Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ Exp Bot, 44, 31–38.

    Article  CAS  Google Scholar 

  • Martínez-Ballesta, M. C., Martínez, V., & Carvajal, M. (2004). Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environ Exp Bot, 52, 161–174.

    Article  Google Scholar 

  • Mattioni, C., Lacerenza, N. G., Troccoli, A., De Leonardis, A. M., & Di Fonzo, N. (1997). Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol Plant, 101, 787–792.

    Article  CAS  Google Scholar 

  • McCree, K. J., & Richardson, S. G. (1987). Stomatal closure vs. osmotic adjustment: a comparison of stress responses. Crop Sci, 27, 539–543.

    Article  Google Scholar 

  • Merah, O., Monneveux, P., & Deleens, E. (2001). Relationships between flag leaf carbon isotope discrimination and several morpho-physiological traits in durum wheat genotypes under Mediterranean conditions. Environ Exp Bot, 45, 63–71.

    Article  Google Scholar 

  • Naidu, B. P., Paleg, L. G., & Jones, G. P. (2000). Accumulation of proline analogues and acclimation of melaleuca species to diverse environments in Australia. Aust J Plant Physiol, 48, 611–620.

    CAS  Google Scholar 

  • Papageorgiou, G. C., & Morata, N. (1995). The usually strong stabilizing effects of glycine betaine on the structure and function in the oxygen evolving photosystem-ii complex. Photosynth Res, 44, 243–252.

    Article  CAS  Google Scholar 

  • Rekika, D., Nachit, M. M., Araus, J. L., & Monneveux, P. (1998). Effects of water deficit on photosynthetic rate and osmotic adjustment in tetraploid wheats. Photosynthetica, 35, 129–138.

    Article  Google Scholar 

  • Ruan, X., Wang, Q., Pan, C. D., Chen, Y. N., & Jiang, H. (2008). Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China. Environ Geol, 57, 1761–1773.

    Article  Google Scholar 

  • Sandquist, D. R., & Ehleringer, J. R. (2003). Carbon isotope discrimination differences within and between contrasting populations of Encelia farinosa raised under common environment conditions. Oecologia, 134, 463–470.

    Article  Google Scholar 

  • Sharma, A., Dwivedi, B. N., Singh, B., & Kumar, K. (1999). Introduction of Populus euphratica in indian semi-arid trans gangetic plains. Ann For, 7, 1–8.

    Google Scholar 

  • Seghatoleslami, M. J., Kafi, M., & Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceuml.) genotypes. Pak J Bot, 40, 1427–1432.

    Google Scholar 

  • Storey, R., & Jones, R. G. W. (1977). Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry, 16, 447–453.

    Article  CAS  Google Scholar 

  • Su, P. X., Chen, H. S., & Li, Q. S. (2003). Characteristics of δ13C values of desert plants and their water utilization efficiency indicated by δ13c values in the desert of central hexi corridor region. J Glaciol Geocryol, 25, 597–602 (In Chinese).

    Google Scholar 

  • Toft, N. L., Anderson, J. E., & Nowak, R. S. (1989). Water use efficiency and carbon isotope composition of plants in a cold desert environment. Oecologia, 80, 11–18.

    Article  CAS  Google Scholar 

  • Voetberg, G. S., & Sharp, R. E. (1991). Growth of maize primary root at low water potentials. III. role of increased proline deposition in osmotic adjustment. Plant Physiol, 96, 1125–1130.

    Article  CAS  Google Scholar 

  • Wang, Q., Ruan, X., Chen, Y. N., & Li, W. H. (2007). Eco-physiological response of Populus euphratica Oliv to water release of the lower reaches of the Tarim river, China. Environ Geol, 53, 349–357.

    Article  CAS  Google Scholar 

  • Watanabe, S., Katsumi, K., Ide, Y., & Sasaki, S. (2000). Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult, 63, 199–206.

    Article  CAS  Google Scholar 

  • Wright, G. C., Hubick, K. T., & Farquhar, G. D. (1988). Discrimination in carbon isotope of leaves correlated with water-use efficiency of field-grown peanut cultivars. Aust J Plant Physiol, 15, 815–825.

    Article  Google Scholar 

  • Xie, H. S., Hsiao, A. I., & Quick, W. A. (1997). Influence of drought on graminicide phytoxicity in wild oat (Avena fatua) growth under difference temperature and humidity conditions. J Plant Growth Regul, 24, 617–622.

    Google Scholar 

  • Xiong, L., & Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 25, 131–139.

    Article  CAS  Google Scholar 

  • Zhao, L. J., Xiao, H. L., Cheng, G. D., Song, Y. X., Zhao, L., Li, C. Z., & Yang, Q. (2008). A preliminary study of water sources of riparian plants in the lower reaches of the Heihe basin. Acta Geosci Sin, 29, 709–718 (In Chinese).

    CAS  Google Scholar 

  • Zhu, J.M. Studies on selective utilization of water by plants in aridland region. Dissertation, Chinese Academy of Forestry, 2007. (In Chinese)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation Major Research Plan (91025024), the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05), and the “Western Light” Project of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, J., Feng, Q., Yu, T. et al. Variation in Populus euphratica foliar carbon isotope composition and osmotic solute for different groundwater depths in an arid region of China. Environ Monit Assess 187, 705 (2015). https://doi.org/10.1007/s10661-015-4890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4890-y

Keywords

Navigation