Skip to main content

Advertisement

Log in

Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The scarcity of water in semiarid regions requires alternative sources for irrigation to improve agricultural production. Here, we aimed to evaluate the effects of produced water from oil exploration on the structure of soil mesofauna during the dry and rainy seasons in irrigated sunflower and castor bean fields in a Brazilian semiarid region. Three irrigation treatments were applied on plots cultivated with castor beans and sunflowers: produced water treated by filtration (filtrated) or treated by reverse osmosis (reverse osmosis) and groundwater. The mesofauna under the biofuel crops was collected and identified during the dry and rainy seasons. Although the abundance and richness of the total fauna did not differ between seasons in sunflower plots, the community was altered. In castor beans, the abundance, richness, and community of mesofauna observed in plots irrigated with produced water differed from the groundwater treatment. Irrigation with produced water promotes important changes in soil fauna community that justify their assessment for the maintenance and monitoring of agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Martínez, V., Cotton, J., Gardner, T., Moore-Kucera, J., Zak, J., Wester, D., & Cox, S. (2014). Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84, 69–82. doi:10.1016/j.apsoil.2014.06.005.

    Article  Google Scholar 

  • Al-Haddabi, M., & Ahmed, M. (2007). Land disposal of treated saline oil production water: impacts on soil properties. Desalination, 212(1–3), 54–61. doi:10.1016/j.desal.2006.09.019.

    Article  CAS  Google Scholar 

  • Allen, R. M., & Robinson, K. (1993). Environmental aspects of produced water disposal. In Proceedings of Middle East oil show (pp. 1–16). Bahrain: Society of Petroleum Engineers. doi:10.2118/25549-MS.

    Google Scholar 

  • Bachar, A., Al-Ashhab, A., Soares, M. I. M., Sklarz, M. Y., Angel, R., Ungar, E. D., & Gillor, O. (2010). Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60(2), 453–61. doi:10.1007/s00248-010-9727-1.

    Article  Google Scholar 

  • Bedano, J. C., Cantú, M. P., & Doucet, M. E. (2006). Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Applied Soil Ecology, 32(3), 293–304. doi:10.1016/j.apsoil.2005.07.009.

    Article  Google Scholar 

  • Bedano, J. C., & Ruf, A. (2007). Soil predatory mite communities (Acari: Gamasina) in agroecosystems of Central Argentina. Applied Soil Ecology, 36(1), 22–31. doi:10.1016/j.apsoil.2006.11.008.

    Article  Google Scholar 

  • Berg, M., De Ruiter, P., Didden, W., Janssen, M., Schouten, T., & Verhoef, H. (2001). Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos, 94(1), 130–142. doi:10.1034/j.1600-0706.2001.09121.x.

    Article  CAS  Google Scholar 

  • Berg, M. P. (2010). Spatio-temporal structure in soil communities and ecosystem processes. In H. A. Verhoef & P. J. Morin (Eds.), Community ecology: processes, models, and applications (pp. 69–79). New York: Oxford University Press. doi:10.1093/acprof:oso/9780199228973.003.0007.

    Google Scholar 

  • Bezemer, T. M., Fountain, M. T., Barea, J. M., Christensen, S., Dekker, S. C., Duyts, H., et al. (2010). Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology, 91(10), 3027–36.

    Article  CAS  Google Scholar 

  • Bosch-Serra, À. D., Padró, R., Boixadera-Bosch, R. R., Orobitg, J., & Yagüe, M. R. (2014). Tillage and slurry over-fertilization affect oribatid mite communities in a semiarid Mediterranean environment. Applied Soil Ecology, 84, 124–139. doi:10.1016/j.apsoil.2014.06.010.

    Article  Google Scholar 

  • Crossley, D. A., Mueller, B. R., & Perdue, J. C. (1992). Biodiversity of microarthropods in agricultural soils: relations to processes. Agriculture, Ecosystems & Environment, 40(1–4), 37–46. doi:10.1016/0167-8809(92)90082-M.

    Article  Google Scholar 

  • Cutz-Pool, L. Q., Palacios-Vargas, J. G., Castaño-Meneses, G., & García-Calderón, N. E. (2007). Edaphic collembola from two agroecosystems with contrasting irrigation type in Hidalgo State, Mexico. Applied Soil Ecology, 36(1), 46–52. doi:10.1016/j.apsoil.2006.11.009.

    Article  Google Scholar 

  • De Ruiter, P. C., Neutel, A. M., & Moore, J. C. (1994). Modelling food webs and nutrient cycling in agro-ecosystems. Trends in Ecology & Evolution, 9(10), 378–83. doi:10.1016/0169-5347(94)90059-0.

    Article  Google Scholar 

  • De Ruiter, P. C., Neutel, A. M., & Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science (New York, N.Y.), 269(5228), 1257–60. doi:10.1126/science.269.5228.1257.

    Article  Google Scholar 

  • Dejoia, A. J. (2002). Developing sustainable practices for CBM-produced water irrigation. The national association of state groundwater agencies. http://www.gwpc.org/meetings/special/PW2002/Papers/Aaron_DeJoia_PWC2002.pdf. Accessed 18 Feb 2012.

  • Domínguez, A., Bedano, J. C., Becker, A. R., & Arolfo, R. V. (2013). Organic farming fosters agroecosystem functioning in Argentinian temperate soils: evidence from litter decomposition and soil fauna. Applied Soil Ecology. doi:10.1016/j.apsoil.2013.11.008.

    Google Scholar 

  • Elkins, N. Z., & Whitford, W. G. (1984). The effects of high salt concentration on desert soil microarthropod density and diversity. Southwestern Naturalist, 30(2), 239–241.

    Article  Google Scholar 

  • Ettema, C., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17(4), 177–183. doi:10.1016/S0169-5347(02)02496-5.

    Article  Google Scholar 

  • Ferreira, R. N. C., Franklin, E., de Souza, J. L. P., & de Moraes, J. (2012). Soil oribatid mite (Acari: Oribatida) diversity and composition in semi-deciduous forest fragments in eastern Amazonia and comparison with the surrounding savanna matrix. Journal of Natural History, 46(33–34), 2131–2144. doi:10.1080/00222933.2012.707245.

    Article  Google Scholar 

  • Frampton, G. K., Van den Brink, P. J., & Gould, P. J. (2000). Effects of spring precipitation on a temperate arable collembolan community analysed using principal response curves. Applied Soil Ecology, 14(3), 231–248. doi:10.1016/S0929-1393(00)00051-2.

    Article  Google Scholar 

  • Franklin, E., Magnusson, W. E., Luizao, F., & Luizão, F. J. (2005). Relative effects of biotic and abiotic factors on the composition of soil invertebrate communities in an Amazonian savanna. Applied Soil Ecology, 29(3), 259–273. doi:10.1016/j.apsoil.2004.12.004.

    Article  Google Scholar 

  • Franklin, E., & Morais, J. W. (2006). Soil mesofauna in Central Amazon. In F. M. S. Moreira, J. O. Siqueira, & L. Brossaard (Eds.), Soil biodiversity in Amazonian and other Brazilian ecosystems (Vol. 78, pp. 142–162). Wallingford: CABI Publishing.

    Google Scholar 

  • Ibekwe, A. M., Poss, J. A., Grattan, S. R., Grieve, C. M., & Suarez, D. (2010). Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biology and Biochemistry, 42(4), 567–575. doi:10.1016/j.soilbio.2009.11.033.

    Article  CAS  Google Scholar 

  • Janke, S., Schamber, H., & Kunze, C. (1992). Effects of heating oil on the soil biological activity. Angewandte Botanik, 66, 42–45.

    CAS  Google Scholar 

  • Johnston, C. R., Vance, G. F., & Ganjegunte, G. K. (2008). Irrigation with coalbed natural gas co-produced water. Agricultural Water Management, 95(11), 1243–1252. doi:10.1016/j.agwat.2008.04.015.

    Article  Google Scholar 

  • Köck-Schulmeyer, M., Ginebreda, A., Postigo, C., López-Serna, R., Pérez, S., Brix, R., et al. (2011). Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat river (NE Spain). Chemosphere, 82(5), 670–678. doi:10.1016/j.chemosphere.2010.11.005.

    Article  Google Scholar 

  • Lalley, J. S., Viles, H. A., Henschel, J. R., & Lalley, V. (2006). Lichen-dominated soil crusts as arthropod habitat in warm deserts. Journal of Arid Environments, 67(4), 579–593. doi:10.1016/j.jaridenv.2006.03.017.

    Article  Google Scholar 

  • Leung, H. W. (2001). Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicology and Environmental Safety, 49(1), 26–39. doi:10.1006/eesa.2000.2031.

    Article  CAS  Google Scholar 

  • Lindberg, N., Engtsson, J. B., & Persson, T. (2002). Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39(6), 924–936. doi:10.1046/j.1365-2664.2002.00769.x.

    Article  Google Scholar 

  • Lopes, E. D. O. R., Weber, O. B., Crisóstomo, L. A., & de Mattos, E. P. N. B. (2014). Short-term effects of produced water on microbial activity in semiarid soil. International Journal of Current Microbiology and Applied Sciences, 3(2), 295–403.

    Google Scholar 

  • MacKay, W. P., Silva, S. I., & Whitford, W. G. (1987). Diurnal activity patterns and vertical migration in desert soil microarthropods. Pedobiologia, 30, 65–71.

    Google Scholar 

  • MacKay, W. P., Silva, S., Lightfoot, D. C., Inez Pagani, M., & Whitford, W. G. (1986). Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. American Midland Naturalist, 116(1), 45–56.

    Article  Google Scholar 

  • Melo, M., Schluter, H., Ferreira, J., Magda, R., Júnior, A., & de Aquino, O. (2010). Advanced performance evaluation of a reverse osmosis treatment for oilfield produced water aiming reuse. Desalination, 250(3), 1016–1018. doi:10.1016/j.desal.2009.09.095.

    Article  CAS  Google Scholar 

  • Morón-Ríos, A., Rodríguez, M. Á., Pérez-Camacho, L., & Rebollo, S. (2010). Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old-field. European Journal of Soil Biology, 46(2), 91–96. doi:10.1016/j.ejsobi.2009.12.008.

    Article  Google Scholar 

  • Neff, J. M. (2002). Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Amsterdam: Elsevier.

    Google Scholar 

  • Nielsen, U. N., Osler, G. H. R., van der Wal, R., Campbell, C. D., & Burslem, D. F. R. P. (2008). Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry, 40(6), 1538–1541. doi:10.1016/j.soilbio.2007.12.029.

    Article  CAS  Google Scholar 

  • Noble, J. C., Whitford, W. G., & Kaliszweski, M. (1996). Soil and litter microarthropod populations from two contrasting ecosystems in semi-arid eastern Australia. Journal of Arid Environments, 32(3), 329–346. doi:10.1006/jare.1996.0027.

    Article  Google Scholar 

  • Pulliam, R. (1988). Sources, sinks, and population regulation. The American Naturalist, 132(5), 652–661.

  • Qadir, M., Boers, T., Schubert, S., Ghafoor, A., & Murtaza, G. (2003). Agricultural water management in water-starved countries: challenges and opportunities. Agricultural Water Management, 62(3), 165–185. doi:10.1016/S0378-3774(03)00146-X.

    Article  Google Scholar 

  • R Development Core Team. (2014). R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing.

  • Remén, C., Krüger, M., & Cassel-Lundhagen, A. (2010). Successful analysis of gut contents in fungal-feeding oribatid mites by combining body-surface washing and PCR. Soil Biology and Biochemistry, 42(11), 1952–1957. doi:10.1016/j.soilbio.2010.07.007.

    Article  Google Scholar 

  • Rietz, D., & Haynes, R. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6), 845–854. doi:10.1016/S0038-0717(03)00125-1.

    Article  CAS  Google Scholar 

  • Sampaio, E. V. S. B. (1995). In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally dry tropical forests. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511753398.

    Google Scholar 

  • Schneider, K., & Maraun, M. (2005). Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia, 49(1), 61–67. doi:10.1016/j.pedobi.2004.07.010.

    Article  Google Scholar 

  • Tabatabaei, S. H., & Najafi, P. (2009). Effects of irrigation with treated municipal wastewater on soil properties in arid and semi-arid regions. Irrigation and Drainage, 58(5), 551–560. doi:10.1002/ird.449.

    Article  Google Scholar 

  • Travis, M. J., Weisbrod, N., & Gross, A. (2012). Decentralized wetland-based treatment of oil-rich farm wastewater for reuse in an arid environment. Ecological Engineering, 39, 81–89. doi:10.1016/j.ecoleng.2011.11.008.

    Article  Google Scholar 

  • Ukabi, S., Whitford, W. G., & Steinberger, Y. (2009). Faunal pedturbation effects on soil microarthropods in the Negev Desert. Journal of Arid Environments, 73(10), 907–911. doi:10.1016/j.jaridenv.2009.04.001.

    Article  Google Scholar 

  • Wallwork, J. A. (1972). Distribution patterns and population dynamics of the micro-arthropods of a desert soil in Southern California. Journal of Animal Ecology, 41(2), 291–310. doi:10.2307/3470.

    Article  Google Scholar 

  • Wardle, D. A. (2002). Communities and ecosystems: linking the aboveground and belowground components. In S. A. Levin & H. S. Horn (Eds.), Monographs in population biology (Vol. 34). Princeton: Princeton University Press.

    Google Scholar 

  • Wardle, D. A., Yeates, G. W., Watson, R. N., & Nicholson, K. S. (1995). The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant and Soil, 170(1), 35–43.

    Article  CAS  Google Scholar 

  • Wardle, D., Yeates, G., Barker, G., & Bonner, K. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38(5), 1052–1062. doi:10.1016/j.soilbio.2005.09.003.

    Article  CAS  Google Scholar 

  • Whitford, W. (1988). Abiotic controls on the functional structure of soil food webs. Biology and Fertility of Soils, 8(1), 1–6. doi:10.1007/BF00260508.

    Google Scholar 

  • Whitford, W. G., Freckman, D. W., Elkins, N. Z., Parker, L. W., Parmalee, R., Phillips, J., & Tucker, S. (1981). Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biology and Biochemistry, 13(5), 417–425. doi:10.1016/0038-0717(81)90087-0.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by PETROBRAS. The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Embrapa Agroindústria Tropical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Nonato Costa Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.N.C., Weber, O.B. & Crisóstomo, L.A. Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem. Environ Monit Assess 187, 520 (2015). https://doi.org/10.1007/s10661-015-4744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4744-7

Keywords

Navigation