Skip to main content
Log in

Metal biouptake by actively growing cells of metal-tolerant bacterial strains

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metal uptake potentials of Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia CA96Co, Rhodococcus sp. AL03Ni, and Corynebacterium kutscheri FL108Hg were studied to determine their competence in detoxification of toxic metals during growth. Metabolism-dependent metal biouptake of the bacteria revealed appreciable uptake of the metals (57–61, 10–30, 23–60, and 10–16 mg g dw−1 of Ni2+, Cr6+, Co2+, and Cd2+, respectively) from medium, after initial drop in pH, without lag phase. The bacteria exhibited 95–100 % removal efficiency for the metals from aqueous medium as 21 (±0.8)–84 (±2.0) concentration factors of the metals were transported into the bacterial systems. Passive adsorption onto the cell surfaces occurred within 2-h contact, and afterwards, there was continuous accumulation for 12 days. Biosorption data of the bacteria were only fitted into Langmuir isotherm model when strains AL96Co, CA207Ni, and AL03Ni interacted with Ni2+, achieving maximum uptake of 9.87, 2.72, and 2.69 mg g dw−1, respectively. This study established that the actively growing bacterial strains displayed, at least, 97.0 % (±1.5) continuous active removals of metals upon adsorption. The bacteria would be good candidates for designing bioreactor useful in the detoxification campaign of heavy metal-polluted systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Qodah, Z. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination, 196, 164–176.

    Article  CAS  Google Scholar 

  • ATSDR. (2008). Public health statement: toxic substances and health. Agency for toxic substances and disease registry. Atlanta: Division of toxicology and environmental medicine. September bulletin.

    Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Kundu, S., & Bhattacharyya, A. (2008). Mechanism of cadmium induced apoptosis in the immunocyte. Toxicology Letters, 177, 83–89.

    Article  CAS  Google Scholar 

  • Franco, R., Sanchez-Olea, R., Reyes-Reyes, E. M., & Panayiotidis, M. I. (2009). Environmental toxicity, oxidative stress and apoptosis: ménage a trios. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674, 3–22.

    Article  CAS  Google Scholar 

  • Francois, F., Lombard, C., Guigner, J.-M., Soreau, P., Brian-Jaisson, F., Martino, G., Vandervennet, M., Garcia, D., Molinier, A.-L., Pignol, D., Peduzzi, J., Zirah, S., & Rebuffat, S. (2012). Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Applied and Environmental Microbiology, 78, 1097–1106.

    Article  CAS  Google Scholar 

  • Gal, J., Hursthouse, A., Tatner, P., Stewart, F., & Welton, R. (2008). Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environment International, 34, 821–838.

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.

    Article  CAS  Google Scholar 

  • Hansen, J. M., Zhang, H., & Jones, D. P. (2006). Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radical Biology and Chemistry, 40, 138–145.

    Article  CAS  Google Scholar 

  • Huang, C. C., Narita, M., Yamagata, T., Itoh, Y., & Endo, G. (1999). Structure analysis of a Class II transposon encoding the mercury resistance of the Gram positive bacterium, Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene, 234, 361–369.

    Article  CAS  Google Scholar 

  • Hussein, H., Ibrahim, S. F., Kandeel, K., & Moawad, H. (2004). Biosorption of heavy metals from waste water using Pseudomonas sp. Electronic Journal of Biotechnology, 7(1), 38–46.

    Article  Google Scholar 

  • Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.

    Article  Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278.

    Article  CAS  Google Scholar 

  • Oyetibo, G. O., Ilori, M. O., Adebusoye, S. A., Obayori, O. S., & Amund, O. O. (2010). Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environmental Monitoring and Assessment, 168, 305–314.

    Article  CAS  Google Scholar 

  • Oyetibo, G. O., Ilori, M. O., Obayori, O. S., & Amund, O. O. (2013a). Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage. Environmental Monitoring and Assessment, 85, 6809–6818.

    Article  Google Scholar 

  • Oyetibo, G. O., Ilori, M. O., Obayori, O. S., & Amund, O. O. (2013b). Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. Journal of Basic Microbiology, 53, 917–927.

    Article  CAS  Google Scholar 

  • Oyetibo, G. O., Ilori, M. O., Obayori, O. S., & Amund, O. O. (2014). Equilibrium studies of cadmium biosorption by presumed non-viable bacterial strains isolated from polluted sites. International Biodeterioration and Biodegradation, 91, 37–44.

    Article  CAS  Google Scholar 

  • Oyeyiola, A. O., Olayinka, K. O., & Alo, B. I. (2006). Correlation studies of heavy metals concentration with sediment properties of some rivers surrounding the Lagos Lagoon. Nigerian Journal of Health and Biomedical Science, 5, 118–122.

    Google Scholar 

  • Pan, R., Cao, L., & Zhang, R. (2009). Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp A19. Journal of Hazardous Materials, 171, 761–766.

    Article  CAS  Google Scholar 

  • Park, E. J., & Park, K. (2007). Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicology in Vitro, 21, 789–794.

    Article  CAS  Google Scholar 

  • Phetsombat, S., Kruatrachue, M., Pokethitiyook, P., & Upatham, S. (2006). Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. Journal of Environmental Biology, 27, 645–652.

    CAS  Google Scholar 

  • Roane, T. M., Josephson, K. L., & Pepper, I. L. (2001). Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Applied and Environmental Microbiology, 67, 3208–3215.

    Article  CAS  Google Scholar 

  • Sar, P., Kazy, S. K., & Singh, S. P. (2001). Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Letters in Applied Microbiology, 32, 257–261.

    Article  CAS  Google Scholar 

  • Sprocati, A. R., Alisi, C., Segre, L., Tasso, F., Galletti, M., & Cremesini, C. (2006). Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Science of the Total Environment, 366, 649–658.

    Article  CAS  Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.

    Article  CAS  Google Scholar 

  • Usuki, F., Fujita, E., & Sasagawa, N. (2008). Methylmercury activates ASK1/JNK signalling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines. Neurotoxicity, 29, 22–30.

    Article  CAS  Google Scholar 

  • Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.

    Article  CAS  Google Scholar 

  • Velasquez, L., & Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167, 713–716.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Jegan, J., Palanivelu, K., & Velan, M. (2005). Removal and recovery of copper from aqueous solution by eggshell in a packed column. Mining Engineering, 18, 545–547.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Palanivelu, K., & Velan, M. (2006). Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 97, 1411–1419.

    Article  CAS  Google Scholar 

  • Voleski, B., Weber, J., & Park, J. M. (2003). Continuous-flow metal biosorption in a regenerable Sargassum column. Water Research, 37, 297–306.

    Article  Google Scholar 

  • Zhou, M., Liu, Y., Zeng, G., Li, X., Xu, W., & Fan, T. (2007). Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World Journal of Microbiology and Biotechnology, 23, 43–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyu Oladunjoye Oyetibo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyetibo, G.O., Ilori, M.O., Obayori, O.S. et al. Metal biouptake by actively growing cells of metal-tolerant bacterial strains. Environ Monit Assess 187, 525 (2015). https://doi.org/10.1007/s10661-015-4731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4731-z

Keywords

Navigation