Skip to main content

Advertisement

Log in

Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Recent research indicates that riparian zones have the potential to contribute significant amounts of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere. Yet, the short-term spatial and temporal variability in GHG emission in these systems is poorly understood. Using two transects of three static chambers at two North Carolina agricultural riparian zones (one restored, one unrestored), we show that estimates of the average GHG flux at the site scale can vary by one order of magnitude depending on whether the mean or the median is used as a measure of central tendency. Because the median tends to mute the effect of outlier points (hot spots and hot moments), we propose that both must be reported or that other more advanced spatial averaging techniques (e.g., kriging, area-weighted average) should be used to estimate GHG fluxes at the site scale. Results also indicate that short-term temporal variability in GHG fluxes (a few days) under seemingly constant temperature and hydrological conditions can be as large as spatial variability at the site scale, suggesting that the scientific community should rethink sampling protocols for GHG at the soil-atmosphere interface to include repeated measures over short periods of time at select chambers to estimate GHG emissions in the field. Although recent advances in technology provide tools to address these challenges, their cost is often too high for widespread implementation. Until technology improves, sampling design strategies will need to be carefully considered to balance cost, time, and spatial and temporal representativeness of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GHG:

Greenhouse gases

N2O:

Nitrous oxide

CO2 :

Carbon dioxide

CH4 :

Methane

References

  • Bowden, R. D., Castro, M. S., Melillo, J. M., Steudler, P. A., & Aber, J. D. (1993). Fluxes of greenhouse gases between soils and the atmosphere in a temperate forest following a simulated hurricane blowdown. Biogeochemistry., 21(2), 61–71.

    Article  CAS  Google Scholar 

  • Burford, J. R., & Bremner, J. M. (1975). Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic-matter. Soil Biology and Biochemistry, 7(6), 389–394.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and waste water. Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Donoso, L., Santana, R., & Sanhueza, E. (1993). Seasonal variation of N2O fluxes at a tropical savannah site: soil consumption of N2O during the dry season. Geophysical Research Letters, 20(13), 1379–1382.

    Article  CAS  Google Scholar 

  • Fisher, K., Jacinthe, P. A., Vidon, P., Liu, X., & Baker, M. E. (2014). Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings. Journal of Environmental Quality, 43(1), 338–348.

    Article  CAS  Google Scholar 

  • Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., & Vidon, P. (2009). Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93(1-2), 49–77.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Jacinthe, P. A., & Dick, W. A. (1997). Soil management and nitrous oxide emissions from cultivated fields in southern Ohio. Soil & Tillage Research, 41(3-4), 221–235.

    Article  Google Scholar 

  • Jacinthe, P. A., & Lal, R. (2004). Effects of soil cover and land-use on the relations flux-concentration of trace gases. Soil Science, 169(4), 243–259.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., Bills, J. S., Tedesco, L. P., & Barr, R. C. (2012). Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency. Journal of Environmental Quality, 41(1), 95–105.

    Article  CAS  Google Scholar 

  • Jacinthe, P.A., Vidon, P., Fisher, K., Liu, X. & Baker, M.E. (2015). Methane and carbon dioxide fluxes in adjacent cropland and riparian buffers. Journal of Environmental Quality. doi:10.2134/jeq2015.01.0014.

  • Kaushal, S. S., Mayer, P. M., Vidon, P. G., Smith, R. M., Pennino, M. J., Newcomer, T. A., Duan, S. W., Welty, C., & Belt, K. T. (2014). Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. Journal of the American Water Resources Association, 50(3), 585–614.

    Article  CAS  Google Scholar 

  • McClain, M., Boyer, E., Dent, C., Gergel, S., Grimm, N., Groffman, P., Hart, S., Harvey, J., Johnston, C., & Mayorga, E. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301–312.

    Article  CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Morse, J. L., Ardon, M., & Bernhardt, E. S. (2012). Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications, 22(1), 264–280.

    Article  Google Scholar 

  • Naiman, R. J., Decamps, H., & McClain, M. E. (2005). Riparia: ecology, conservation, and management of streamside communities. London, United Kingdom: Elsevier Academic Press. 430 pp.

    Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis, part 3—chemical methods (pp. 961–1010). Madison, WI: Soil Sci. Soc. Am.

    Google Scholar 

  • Riveros-Iregui, D.A., McGlynn, B.L. (2009) Landscape structure control on soil CO2 efflux variability in complex terrain: scaling from point observations to watershed scale fluxes. Journal of Geophysical Research: Biogeosciences, 114(G2), G02010

  • Riveros-Iregui, D.A., Emanuel, R.E., Muth, D.J., McGlynn, B.L., Epstein, H.E., Welsch, D.L., Pacific, V.J. & Wraith, J.M. (2007) Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophys. Res. Lett. 34(17).

  • Vidon, P., Allan, C., Burns, D., Duval, T., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., & Sebestyen, S. (2010). Hot spots and hot moments in riparian zones: potential for improved water quality management. Journal of the American Water Resources Association, 46(2), 278–298.

    Article  CAS  Google Scholar 

  • Vidon, P., Jacinthe, P. A., Liu, X., Fisher, K., & Baker, M. (2014). Hydrobiogeochemical controls on riparian nutrient and greenhouse gas dynamics: 10 years post-restoration. Journal of the American Water Resources Association, 50(3), 639–652.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by USDA-AFRI grant # 2012-67019-30226 to PI McMillan and Vidon, while Molly Welsh’s work was partially supported by NSF GRFP # 1439650. The authors would like to thank the landowner of the study sites, Mr. Newman and the Surry County Soil and Water Conservation District, especially Mr. Goings, for granting us access to the sites for the duration of the study. Thanks are also due to Jordan Gross for help in the field and laboratory.

Compliance and ethical standards

Funding

This work was funded by USDA-AFRI grant # 2012-67019-30226 to PI McMillan and Vidon, while Molly Welsh’s work was partially supported by NSF GRFP # 1439650.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vidon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidon, P., Marchese, S., Welsh, M. et al. Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones. Environ Monit Assess 187, 503 (2015). https://doi.org/10.1007/s10661-015-4717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4717-x

Keywords

Navigation