Skip to main content
Log in

Could the presence of larger fractions of non-cyanobacterial species be used as a predictor of microcystin production under variable nutrient regimes?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The occurrence of cyanobacteria and microcystin is highly dynamic in natural environments and poses one of the biggest challenges to water resource management. While a number of drivers are known to be responsible for the occurrence of cyanobacterial blooms, the drivers of microcystin production are not adequately known. This study aims to quantify the effects of the changes in the structures of phytoplankton and cyanobacterial communities on the dynamics of microcystin production under highly variable nutrient concentration. In our study, nutrient variability could explain 64 % of the variability in microcystin production. When changes in the fractions of non-cyanobacteria versus cyanobacteria genera were additionally included, 80 % of the variability in microcystin production could be explained; under high nutrient concentrations, non-cyanobacterial phytoplankton groups were dominant over cyanobacteria and cyanobacteria produced more toxins. In contrast, changes in the cyanobacterial community structures could only explain a further 4 % of the dynamics of microcystin production. As such, the dominance of non-cyanobacterial groups appears to be a useful factor to explain microcystin occurrence in addition to traditionally used factors such as absolute cyanobacterial cell numbers, especially when the nutrient regime is taken into account. This information could help to further refine the risk assessment frameworks which are currently used to manage the risk posed by cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albay, M., Matthiensen, A., & Codd, G. A. (2005). Occurrence of toxic blue-green algae in the Kucukcekmece Lagoon (Istanbul, Turkey). Environmental Toxicology, 20, 277–284.

    Article  CAS  Google Scholar 

  • APHA (1998). Standard methods for the examination of water and wastewater 20th edn.

  • Arnold, J. (1990). Perth Wetlands Resource Book. Perth: Environmental Protection Authority.

    Google Scholar 

  • Arnold, T. N., & Oldham, C. E. (1997). Trace-element contamination of a shallow wetland in Western Australia. Marine and Freshwater Research, 48, 531–539.

    Article  CAS  Google Scholar 

  • Babica, P., Blaha, L., & Marsalek, B. (2006). Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. Journal of Phycology, 42, 9–20.

    Article  Google Scholar 

  • Baldia, S., Evangelista, A., Aralar, E., & Santiago, A. (2007). Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines. Journal of Applied Phycology, 19, 607–613.

    Article  CAS  Google Scholar 

  • Berry, J. P., Gantar, M., Perez, M. H., Berry, G., & Noriega, F. G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 6, 117–146.

    Article  CAS  Google Scholar 

  • Beutler, M., Wiltshire, K. H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U. P., & Dau, H. (2002). A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research, 72, 39–53.

    Article  CAS  Google Scholar 

  • Beversdorf, L. J. (2013). Spatial and temporal variation in cyanobacterial population dynamics and microcystin production in eutrophic lakes. Ph.D., The University of Wisconsin - Madison, Ann Arbor, USA.

  • Bittencourt-Oliveira, M.d., Chia, M., de Oliveira, H., Cordeiro Araújo, M., Molica, R. & Dias, C. (2014). Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. Journal of Applied Phycology, 1–10.

  • Camacho, F.A. (2008). Algal chemical ecology. In C.D. Amsler (Ed.), (pp. 105–120) Heidelberg.

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: E & FN Spon.

    Book  Google Scholar 

  • Churro, C., Dias, E., & Valério, E. (2012). In Y. Lou (Ed.), Novel approaches and their applications in risk assessment. Shanghai: InTech.

    Google Scholar 

  • Coops, H., Beklioglu, M., & Crisman, T. (2003). The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia, 506–509, 23–27.

    Article  Google Scholar 

  • Dadheech, P., Selmeczy, G., Vasas, G., Padisák, J., Arp, W., Tapolczai, K., Casper, P., & Krienitz, L. (2014). Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic Lake District, Germany: an ecological, genetic and toxicological survey. Toxins, 6, 2912–2931.

    Article  CAS  Google Scholar 

  • Dai, G., Deblois, C. P., Liu, S., Juneau, P., & Qiu, B. (2008). Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc). Aquatic Toxicology, 89, 113–121.

    Article  CAS  Google Scholar 

  • Davis, J.A., Rosich, R.S., Bradley, J.S., Growns, J.E., Schmidt, L.G. & Cheal, F. (1993). Wetland classification on the basis of water quality and invertebrate community data.

  • Engström-Öst, J., Repka, S., & Mikkonen, M. (2011). Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae, 10, 530–535.

    Article  Google Scholar 

  • Ghadouani, A., & Smith, R. E. H. (2005). Phytoplankton distribution in Lake Erie as assessed by a new in situ spectrofluorometric technique. Journal of Great Lakes Research, 31, 154–167.

    Article  CAS  Google Scholar 

  • Graneli, E., & Hansen, P. J. (2006). In E. Granéli & J. Turner (Eds.), Ecology of harmful algae (pp. 189–201). Heidelberg: Springer Berlin.

    Chapter  Google Scholar 

  • Graneli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae, 8, 94–102.

    Article  CAS  Google Scholar 

  • Hillebrand, H., Durselen, C., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.

    Article  Google Scholar 

  • Holland, A., & Kinnear, S. (2013). Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Marine Drugs, 11, 2239–2258.

    Article  Google Scholar 

  • Huisman, J., & Hulot, F. D. (2005). In J. Huisman, H. C. P. Matthijs, & P. M. Visser (Eds.), Harmful cyanobacteria (pp. 143–176). Netherlands: Springer.

    Chapter  Google Scholar 

  • Huisman, J., Matthijs, H. C. P., Visser, P., Edwin, W., Kardinaal, A., & Visser, P. (2005). In J. Huisman, H. C. P. Matthijs, & P. M. Visser (Eds.), Harmful cyanobacteria (pp. 41–63). Netherlands: Springer.

    Chapter  Google Scholar 

  • ISO. (2005). Determination of microcystins: method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

  • Istvánovics, V., Somlyódy, L., & Clement, A. (2002). Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Research, 36, 3314–3322.

    Article  Google Scholar 

  • Jang, M. H., Ha, K., Jung, J. M., Lee, Y. J., & Takamura, N. (2006). Increased microcystin production of Microcystis aeruginosa by indirect exposure of nontoxic cyanobacteria: potential role in the development of Microcystis bloom. Bulletin of Environmental Contamination and Toxicology, 76, 957–962.

    Article  CAS  Google Scholar 

  • Janse, I., Kardinaal, W. E. A., Kamst-van Agterveld, M., Meima, M., Visser, P. M., & Zwart, G. (2005). Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes. Environmental Microbiology, 7, 1514–1524.

    Article  CAS  Google Scholar 

  • Jensen, J. P., Jeppesen, E., Olrik, K., & Kristensen, P. (1994). Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1692–1699.

    Article  Google Scholar 

  • Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., Nõges, P., Attayde, J., Zohary, T., Coppens, J., Bucak, T., Menezes, R., Freitas, F., Kernan, M., Søndergaard, M., & Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201–227.

    Article  Google Scholar 

  • Jiang, Y., Ji, B., Wong, R. N. S., & Wong, M. H. (2008). Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium Microcystis aeruginosa. Harmful Algae, 7, 127–136.

    Article  CAS  Google Scholar 

  • Joung, S.-H., Oh, H.-M., Ko, S.-R., & Ahn, C.-Y. (2011). Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10, 188–193.

    Article  Google Scholar 

  • Kardinaal, W. E. A., Janse, I., Kamst-van Agterveld, M., Meima, M., Snoek, J., Mur, L. R., Huisman, J., Zwart, G., & Visser, P. M. (2007). Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology, 48, 1–12.

    Article  Google Scholar 

  • Kearns, K. D., & Hunter, M. D. (2000). Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environmental Microbiology, 2, 291–297.

    Article  CAS  Google Scholar 

  • Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525–1530.

    Article  CAS  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Li, Y., & Li, D. (2011). Competition between toxic Microcystis aeruginosa and non-toxic Microcystis Wesenbergii with Anabaena PCC7120. Journal of Applied Phycology, 24, 69–78.

    Article  CAS  Google Scholar 

  • Macías, F., Galindo, J., García-Díaz, M., & Galindo, J. (2008). Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochemistry Reviews, 7, 155–178.

    Article  Google Scholar 

  • Millie, D. F., Fahnenstiel, G. L., Bressie, J. D., Pigg, R. J., Rediske, R. R., Klarer, D. M., Tester, P. A., & Litaker, R. W. (2009). Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): Bloom distributions, toxicity, and environmental influences. Aquatic Ecology, 43, 915–934.

    Article  CAS  Google Scholar 

  • Nagai, T., Imai, A., Matsushige, K., & Fukushima, T. (2007). Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology, 8, 261–270.

    Article  CAS  Google Scholar 

  • O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    Article  Google Scholar 

  • Orihel, D. M., Bird, D. F., Brylinsky, M., Chen, H. R., Donald, D. B., Huang, D. Y., Giani, A., Kinniburgh, D., Kling, H., Kotak, B. G., Leavitt, P. R., Nielsen, C. C., Reedyk, S., Rooney, R. C., Watson, S. B., Zurawell, R. W., & Vinebrooke, R. D. (2012). High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Canadian Journal of Fisheries and Aquatic Sciences, 69, 1457–1462.

    Article  CAS  Google Scholar 

  • Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65, 995–1010.

    Article  CAS  Google Scholar 

  • Pflugmacher, S. (2002). Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environmental Toxicology, 17, 407–413.

    Article  CAS  Google Scholar 

  • Pinheiro, C., Azevedo, J., Campos, A., Loureiro, S., & Vasconcelos, V. (2013). Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia, 705, 27–42.

    Article  CAS  Google Scholar 

  • Reichwaldt, E. S., Song, H., & Ghadouani, A. (2013). Effects of the distribution of a toxic Microcystis bloom on the small scale patchiness of zooplankton. Plos One, 8, e66674.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369–370, 11–26.

    Article  Google Scholar 

  • Reynolds, C.S., Usher, M., Saunders, D., Dobson, A., Peet, R., Adam, P., Birks, H.J.B., Gustafssor, L., McNelly, J., Paine, R.T. & Richardson, D. (2006). The ecology of phytoplankton, (pp. 178–238). Cambridge University Press.

  • Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8, 665–673.

    Article  CAS  Google Scholar 

  • Rzymski, P., Poniedziałek, B., Kokociński, M., Jurczak, T., Lipski, D., & Wiktorowicz, K. (2014). Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae, 35, 1–8.

    Article  CAS  Google Scholar 

  • Scott, L. L., Downing, S., Phelan, R. R., & Downing, T. G. (2014). Environmental modulation of microcystin and β-N-methylamino-l-alanine as a function of nitrogen availability. Toxicon, 87, 1–5.

    Article  CAS  Google Scholar 

  • Sinang, S., Reichwaldt, E., & Ghadouani, A. (2013). Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins. Environmental Monitoring and Assessment, 185, 6379–6395.

    Article  CAS  Google Scholar 

  • Soares, M. C. S., Rocha, M. I. A., Marinho, M. M., Azevedo, S. M. F. O., Branco, C. W. C., & Huszar, V. L. M. (2009). Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology, 57, 137–149.

    Article  Google Scholar 

  • Švercel, M. (2013). Cyanobacteria: ecology, toxicology and management. In S. Aloysio Da Ferrão-Filho (Ed.), (pp. 27–41), Nova Science Publishers, United States of America.

  • Utermöhl, H. (1958). Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Utkilen, H., & Gjolme, N. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Applied and Environmental Microbiology, 61, 797–800.

    CAS  Google Scholar 

  • Van de Waal, D. B., Verspagen, J. M. H., Lürling, M., Van Donk, E., Visser, P. M., & Huisman, J. (2009). The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecology Letters, 12, 1326–1335.

    Article  Google Scholar 

  • Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J., & Sivonen, K. (2002). Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbial Ecology, 43, 443–454.

    Article  CAS  Google Scholar 

  • Woodward, B. (2008). Literature and Interview Project: Constructed Lakes in the Perth Metropolitan and South West Region. Prepared for Department of Water, Western Australian Local Government Association.

  • Wu, Y., Li, L., Gan, N., Zheng, L., Ma, H., Shan, K., Liu, J., Xiao, B., & Song, L. (2014). Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. Journal of Environmental Sciences, 26, 1921–1929.

    Article  Google Scholar 

  • Yang, J., Deng, X., Xian, Q., Qian, X., & Li, A. (2014). Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia, 727, 65–73.

    Article  CAS  Google Scholar 

  • Zurawell, R. W., Chen, H. R., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 8, 1–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Australian Research Council’s Linkage Project funding scheme (LP0776571) and the Water Corporation of Western Australia. We wish to thank the City of Cockburn and the City of Stirling for permission to sample the lakes, Professor Pierre Legendre, Laura Firth, and Kevin Murray for their valuable statistical advice, and Liah Coggins for her help in the editing of the manuscript. During the study, Sinang, S.C was supported by a scholarship from Universiti Pendidikan Sultan Idris (UPSI) and the Malaysian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Ghadouani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinang, S.C., Reichwaldt, E.S. & Ghadouani, A. Could the presence of larger fractions of non-cyanobacterial species be used as a predictor of microcystin production under variable nutrient regimes?. Environ Monit Assess 187, 476 (2015). https://doi.org/10.1007/s10661-015-4695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4695-z

Keywords

Navigation