Skip to main content
Log in

Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity, and environmental influences

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Phytoplankton abundance and composition and the cyanotoxin, microcystin, were examined relative to environmental parameters in western Lake Erie during late-summer (2003–2005). Spatially explicit distributions of phytoplankton occurred on an annual basis, with the greatest chlorophyll (Chl) a concentrations occurring in waters impacted by Maumee River inflows and in Sandusky Bay. Chlorophytes, bacillariophytes, and cyanobacteria contributed the majority of phylogenetic-group Chl a basin-wide in 2003, 2004, and 2005, respectively. Water clarity, pH, and specific conductance delineated patterns of group Chl a, signifying that water mass movements and mixing were primary determinants of phytoplankton accumulations and distributions. Water temperature, irradiance, and phosphorus availability delineated patterns of cyanobacterial biovolumes, suggesting that biotic processes (most likely, resource-based competition) controlled cyanobacterial abundance and composition. Intracellular microcystin concentrations corresponded to Microcystis abundance and environmental parameters indicative of conditions coincident with biomass accumulations. It appears that environmental parameters regulate microcystin indirectly, via control of cyanobacterial abundance and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on phototrophic organisms. J Phycol 42:9–20

    Google Scholar 

  • Blackburn S, Bolch C, Jones G, Negri A, Orr P (1997) Cyanobacterial blooms: why are they toxic? In: Davis JR (ed) Managing algal blooms-outcomes from CSIRO’s multi-divisional blue-green algal program, Commonwealth Scientific and Industrial Research Organization (CSIRO). Land & Water, Canberra, pp 67–77

    Google Scholar 

  • Blom JF, Robinson JA, Jüttner F (2001) High grazer toxicity of [D-ASP3, (E)-Dhb7] Microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon 39:1923–1932

    CAS  PubMed  Google Scholar 

  • Bolsenga SJ, Herdendorf CE (1993) Lake Erie and Lake St. Clair handbook. Wayne State Univ Press, Detroit

    Google Scholar 

  • Briand JF, Robillot C, Quiblier-Lloberas C, Bernard C (2002) A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch Hydrobiol 153:605–622

    CAS  Google Scholar 

  • Budd JW, Beeton AM, Stumpf RP, Culver DA, Kerfoot WC (2002) Satellite observations of Microcystis blooms in Western Lake Erie. Verh Internat Verein Limnol 27:3788–3793

    Google Scholar 

  • Burns NM (1985) Erie: the Lake that survived. Rowman and Allanheld, Totowa

    Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. In: Callow JA (ed) Advances in botanical research, vol 27. Academic Press, London, pp 211–256

    Google Scholar 

  • Chandler DC (1940) Limnological studies of western Lake Erie; I. Plankton and certain physical-chemical data of the Bass Islands region, from September, 1938 to November, 1939. Ohio J Sci 40:291–336

    CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 27:211–228

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. Primer-E, Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analyses and interpretation, 2nd edn. Primer-E, LTD, Plymouth

    Google Scholar 

  • Conroy JD, Edwards WJ, Pontius RA, Kane DD, Zhang H, Shea JF, Richey JN, Culver DA (2005) Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshw Biol 50:1146–1162

    CAS  Google Scholar 

  • Davis CC (1964) Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol Oceanogr 9:275–283

    Google Scholar 

  • Davis CO, Simmons MS (1979) Water chemistry and phytoplankton field and laboratory procedures. University of Michigan, Great Lakes Res. Div. Special Report No. 70, Ann Arbor

  • Dionisio-Pires LM, Bontes BM, Van Donk E, Ibelings BW (2005) Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J Plank Res 27:331–339

    Google Scholar 

  • Downing TG, Meyer C, Gehringer MM, van de Venter M (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262

    CAS  PubMed  Google Scholar 

  • Dyble J, Fahnenstiel G, Litaker RW, Millie D, Tester P (2008) Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes. Environ Toxicol 23:507–516. doi:10.1002/tox.20370

    CAS  PubMed  Google Scholar 

  • Edwards WJ, Conroy JD, Culver DA (2005) Hypolimnetic oxygen depletion dynamics in the central basin of Lake Erie. J Great Lakes Res 31(Suppl. 2):262–271

    CAS  Google Scholar 

  • Epp GT (1996) Grazing on filamentous cyanobacteria by Daphnia pulicaria. Limnol Oceanogr 41:560–567

    Google Scholar 

  • Ernst B, Hitzfeld B, Dietrich D (2001) Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.). Environ Toxicol 16:483–488

    CAS  PubMed  Google Scholar 

  • Fahnenstiel GL, Krause AE, McCormick MJ, Carrick HJ, Schelske CL (1998) The structure of the planktonic food-web in the St. Lawrence Great Lakes. J Great Lakes Res 24:531–544

    CAS  Google Scholar 

  • Fahnenstiel GL, Stone RA, McCormick MJ, Schelske CL, Lohrenz SE (2000) Spring isothermal mixing in the Great Lakes: evidence of nutrient limitation and nutrient–light interactions in a suboptimal light environment. Can J Fish Aquat Sci 57:1901–1910

    Google Scholar 

  • Fahnenstiel GL, Beckmann C, Lohrenz SE, Millie DF, Schofield OME, McCormick MJ (2002) Standard Niskin and Van Dorn bottles inhibit phytoplankton photosynthesis in Lake Michigan. Verh Internat Verein Limnol 28:376–380

    Google Scholar 

  • Fahnenstiel GL, Millie DF, Dyble J, Rediske R, Litaker LW, Tester PA, McCormick MJ (2008) Factors affecting microcystin concentration and cell quota in Saginaw Bay, Lake Huron. Aquat Ecosyst Health Manag 11:190–195

    CAS  Google Scholar 

  • Fastner J, Neumann U, Wirsing B, Weckesser J, Wiedner C, Nixdorf B, Chorus I (1999) Microcystins (hepatotoxic heptapeptides) in German fresh water bodies. Environ Toxicol 14:13–22

    CAS  Google Scholar 

  • Fitzpatrick MAJ, Munawar M, Leach JH, Haffner GD (2007) Factors regulating primary production and phytoplankton dynamics in western Lake Erie. Fund Appl Limnol 169:137–152

    CAS  Google Scholar 

  • Fuller K, Shear H, Wittig J (eds) (1995) The Great Lakes: an environmental atlas and resource book, 3rd edn. Government of Canada and United States Environmental Protection Agency, Ottawa

    Google Scholar 

  • Gauch HG Jr (1982) Multivariate analysis and community structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Goericke R, Welschmeyer NA (1993) The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol Oceanogr 38:80–95

    CAS  Google Scholar 

  • Guildford SJ, Hecky RE, Smith REH, Taylor WD, Charlton MN, Barlow-Busch L, North RL (2005) Phytoplankton nutrient status in Lake Erie in 1997. J Great Lakes Res 31:72–88

    CAS  Google Scholar 

  • Hartig JH, Wallen DG (1984) Seasonal variation of nutrient limitation in western Lake Erie. J Great Lakes Res 10:449–460

    CAS  Google Scholar 

  • Hartman W (1973) Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie. Great Lakes Fish Comm Tech Rep 22, Ann Arbor

    Google Scholar 

  • Healey FP, Hendzel LL (1980) Physiological indicators of nutrient deficiency in lake phytoplankton. Can J Fish Aquat Sci 37:442–453

    CAS  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    CAS  Google Scholar 

  • Herdendorf CE (1987) The ecology of the coastal marshes of western Lake Erie: a community profile. US Fish and Wildlife Service, Biological Report 85(7.9), Washington DC

  • Hiriart-Baer V, Smith REH (2004) Models for ultraviolet radiation–dependent photoinhibition of Lake Erie phytoplankton. Limnol Oceanogr 49:202–214

    CAS  Google Scholar 

  • Hitzfield BC, Hoger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108S:113–122

    Google Scholar 

  • Hyenstrand P, Metcalf JS, Beattie KA, Codd GA (2001) Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulations. Toxicon 39:589–594

    CAS  PubMed  Google Scholar 

  • Jensen JP, Jeppesen E, Olrik K, Kristensen P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51:1692–1699

    Google Scholar 

  • Kaebernick M, Neilan BA, Borner T, Dittman E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    CAS  PubMed  Google Scholar 

  • Kampe H, König-Rinke M, Petzoldt T, Benndorf J (2007) Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri. Limnologica 37:137–145

    Google Scholar 

  • Katagami Y, Tanaka T, Honoma T, Yokoyama A, Park H-D (2004) Bioaccumulation of a cyanobacterial toxin, microcystin, on Stenopsyche marmorata and the ecological implications for its impact on the ecosystem of the Tenryu River, Japan. Jpn J Limnol 65:1–12

    CAS  Google Scholar 

  • Kovacik T (1972) Information on the velocity and flow pattern of Detroit River water in western Lake Erie revealed by an accidental salt spill. Ohio J Sci 72:81–86

    Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes in a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microbial Ecol 43:107–118

    CAS  Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841

    CAS  PubMed  Google Scholar 

  • Lawton LA, Edwards C, Codd GA (1994) Extraction and high performance liquid chromatographic method for determination of microcystins in raw and treated waters. Analyst 119:1525–1530

    CAS  PubMed  Google Scholar 

  • Lean DRS, Abbott AP, Charlton MN, Rao SS (1983) Seasonal phosphate demand for Lake Erie phytoplankton. J Great Lakes Res 9:83–91

    CAS  Google Scholar 

  • Leflaive JP, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    CAS  Google Scholar 

  • Łotocka M (2001) Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus. Oceanologia 43:441–453

    Google Scholar 

  • Lukac M, Aegerter R (1993) Influence of trace metals on growth and toxin production in Microcystis aeruginosa. Toxicon 31:293–305

    CAS  PubMed  Google Scholar 

  • Mackey M, Mackey DJ, Higgins HW, Wright S (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    CAS  Google Scholar 

  • Mackey MD, Higgins HW, Mackey DJ, Holdsworth D (1998) Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Res 45:1441–1468

    CAS  Google Scholar 

  • Madenjian CP (1995) Removal of algae by the zebra mussel (Dreissena polymorpha) population in western Lake Erie: a bioenergetics approach. Can J Fish Aquat Sci 52:381–390

    Google Scholar 

  • Makarewicz JC, Lewis TW, Bertram P (1999) Phytoplankton composition and biomass in the offshore waters of Lake Erie: pre- and post-Dreissena introduction (1983–1993). J Great Lakes Res 25:135–148

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Menzel DW, Corwin N (1965) The measurement of total phosphorus liberated in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol Oceanogr 10:280–281

    Google Scholar 

  • Millie DF, Ingram DA, Dionigi CP (1990) Pigment and photosynthetic responses of Oscillatoria agardhii (Cyanophyta) to photon flux density and spectral quality. J Phycol 26:660–666

    Google Scholar 

  • Millie DF, Paerl HW, Hurley JP (1993) Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can J Fish Aquat Sci 50:2513–2527

    CAS  Google Scholar 

  • Millie DF, Fahnenstiel GL, Carrick HJ, Lohrenz SE, Schofield O (2002) Phytoplankton pigments in coastal Lake Michigan: distributions during the spring isothermal period and relation with episodic sediment resuspension. J Phycol 38:639–648

    CAS  Google Scholar 

  • Millie DF, Fahnenstiel GL, Dyble J, Pigg R, Rediske R, Klarer DM R, Litaker RW, Tester PA (2008) Influence of environmental conditions on summer cyanobacterial abundance in Saginaw Bay, Lake Huron. Aquat Ecosyst Health Manag 11:196–205

    Google Scholar 

  • Moss B (1977) Factors controlling the seasonal incidence of Pandorina morum (Mull.) Bory (Chlorophyta, Volvocales) in a small pond. Hydrobiologia 55:219–223

    Google Scholar 

  • Munawar M, Munawar IF (1996) Phytoplankton dynamics in the North American Great Lakes, vol 1, Lakes Ontario, Erie and St. Clair. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Munawar M, Munawar IF, Dermott R, Niblock H, Carou S (2002) Is Lake Erie a resilient ecosystem?. Aquat Ecosyst Health Manag 5:79–93

    Google Scholar 

  • Murphy TP, Irvine K, Guo T, Davies J, Murkin H, Charlton M, Watson SB (2003) New microcystin concerns in the lower Great Lakes. Water Qual Res J Can 38:127–140

    CAS  Google Scholar 

  • Nicholls KH (1997) Planktonic green algae in western Lake Erie: the importance of temporal scale in the interpretation of change. Freshw Biol 38:419–425

    Google Scholar 

  • Nicholls KH, Hopkins GJ (1993) Recent changes in Lake Erie (north shore) phytoplankton: Cumulative impacts of phosphorus loading reductions and zebra mussel introduction. J Great Lakes Res 19:637–647

    Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    CAS  Google Scholar 

  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the bacteriological code. Int J Syst Evol Microbiol 51:873–879

    CAS  PubMed  Google Scholar 

  • Ouellette AJA, Handy S, Wilhelm SW (2006) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microbial Ecol 51:154–165

    CAS  Google Scholar 

  • Paerl HW (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61:143–149

    Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    CAS  Google Scholar 

  • Paerl HW (1996) A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35:25–35

    Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    CAS  PubMed  Google Scholar 

  • Paerl HW, Millie DF (1996) Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35:160–167

    Google Scholar 

  • Paerl HW, Tucker CS (1995) Ecology of blue–green algae in aquaculture ponds. J World Aquacult Soc 26:109–131

    Google Scholar 

  • Paerl HW, Bland PT, Bowles ND, Haibach ME (1985) Adaption to high-intensity, low-wavelength light among surface blooms of the cyanobacterium, Microcystis aeruginosa. Appl Environ Microbiol 49:1046–1052

    CAS  PubMed  Google Scholar 

  • Pilotto LS, Douglas RM, Burch MD, Cameron S, Beers M, Rouch GR, Robinson P, Kirk M, Cowie CT, Hardiman S, Moore C, Attewell RG (1997) Health effects of exposure to cyanobacteria (blue–green algae) during recreational water-related activities. Aust N Z J Public Health 21:562–566

    CAS  PubMed  Google Scholar 

  • Pinckney JL, Millie DF, Howe KE, Paerl HP, Hurley JP (1996) Flow scintillation counting of 14C-labeled microalgal photopigments. J Plank Res 18:1867–1880

    CAS  Google Scholar 

  • Porta D, Fitzpatrick MAJ, Haffner GD (2005) Annual variability of phytoplankton primary production in the western basin of Lake Erie (2002–2003). J Great Lakes Res 31:63–71

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K (1998) Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecol 36:181–192

    CAS  Google Scholar 

  • Redalje DG (1993) The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and carbon biomass. In: Kemp PF, Sherr EF, Cole JJ (eds) Current methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 563–572

    Google Scholar 

  • Richards RP (2006) Trends in sediment and nutrients in major Lake Erie tributaries, 1975–2004. In: Lake Erie Lakewide Management Plan (LaMP) Update, US Environmental Protection Agency, Great Lakes National Program office, Chicago, pp 22–27 (Sect. 10.10)

  • Rinta-Kanto JM, Wilhelm SW (2006) Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Appl Environ Microbiol 72:5083–5085

    CAS  PubMed  Google Scholar 

  • Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western lake Erie using quantitative real-time PCR. Environ Sci Technol 39:4198–4205

    CAS  PubMed  Google Scholar 

  • Robarts RD (1984) Factors controlling primary production in a hypertrophic lake (Hartbeespoort Dam, South Africa). J Plankton Res 6:91–105

    CAS  Google Scholar 

  • Roberts RD, Sephton LM (1989) Phytoplankton extracellular dissolved organic carbon production in a hypereutrophic Africn Lake. Hydrobiologia 182:137–148

    Google Scholar 

  • Roberts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21:231–399

    Google Scholar 

  • Rosa F, Burns NM (1987) Lake Erie central basin oxygen depletion changes from 1929–1980. J Great Lakes Res 13:684–696

    CAS  Google Scholar 

  • Ross C, Santiago-Vázquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 1:66–73

    Google Scholar 

  • Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment Chl a ratios. Mar Ecol Prog Ser 192:49–63

    Google Scholar 

  • Schlüter L, Lauridsen TL, Krogh G, Jørgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios—a comparison between pigment analysis by HPLC and microscopy. Freshw Biol 51:1474–1485

    Google Scholar 

  • Sly PG (1976) Lake Erie and its basin. J Fish Res Board Can 33:355–370

    Google Scholar 

  • Song L, Sano T, Li R, Watanabe MM, Liu Y, Kaya K (1998) Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycol Res 46:19–23

    CAS  Google Scholar 

  • Sonzogni WC, Monteith TJ, Bach WN, Hughes VG (1978) United States Great Lakes tributary loadings. Great Lakes Pollution from Land Use Activities Ref Group Rep, Int Joint Comm, Great Lakes Regional Office, Windsor

    Google Scholar 

  • Stutzman P (1995) Food quality of gelatinous colonial chlorophytes to the freshwater zooplankters Daphnia pulicaria and Diaptomus oregonensis. Freshw Biol 34:149–153

    Google Scholar 

  • Utermöhl H (1958) Zur vervollkommung der quantitativen phytoplankton-methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • van der Westhuizen AJ, Eloff JN (1985) Effects of temperature and light on toxicity and growth of the blue–green alga Microcystis aeruginosa [UV-006]. Planta 163:55–59

    Google Scholar 

  • Vandelannoote A, Deelstra H, Ollevier F (1999) The inflow of the Rusizi River to Lake Tanganyika. Hydrobiologia 407:65–73

    Google Scholar 

  • Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    CAS  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. System Appl Microbiol 27:592–602

    CAS  Google Scholar 

  • Vollenweider RA (1974) A manual on methods for measuring primary production in aquatic environments, 2nd edn. Blackwell Scientific, Oxford IBP Handbook No. 12

    Google Scholar 

  • Wallen DG, Botek C (1984) Heterogeneous patterns of primary productivity in western Lake Erie. Verh Internat Verein Limnol 222:495–503

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • White SH, Fabbro LD, Duivenvoorden LJ (2003) Changes in cyanoprokaryote populations, Microcystis morphology, and microcystin concentrations in Lake Elphinstone (Central Queensland, Australia). Environ Toxicol 18:403–412

    CAS  PubMed  Google Scholar 

  • Wilhelm SW, DeBruyn JM, Gillor O, Twiss MR, Livingston K, Bourbonniere RA, Pickell LD, Trick CG, Dean AL, McKay RML (2003) Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquat Microbial Ecol 32:275–285

    Google Scholar 

  • World Health Organization (2003) Guidelines for safe recreational water environments, vol 1, coastal and fresh waters. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2004) Guidelines for drinking water quality, 3rd edn, vol 1, recommendations. World Health Organization, Geneva

    Google Scholar 

  • Wu SK, Xie P, Liang GD, Wang SB, Liang XM (2006) Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. Freshw Biol 51:2309–2319

    CAS  Google Scholar 

Download references

Acknowledgments

This work is a portion of the multi-disciplinary research program of the Center of Excellence for Great Lakes and Human Health (http://www.glerl.noaa.gov/res/Centers/HumanHealth/), funded by the Oceans and Human Health Initiative of NOAA’s Office of Global Programs and the Cooperative Institute for Limnology and Ecosystems Research, a joint institute of the University of Michigan and NOAA’s Office of Oceanic and Atmospheric Research. Reference to proprietary names are necessary to report factually on available data; however, the University of South Florida, Florida Fish and Wildlife Conservation Commission, National Oceanic and Atmospheric Administration, Grand Valley State University, and the Ohio Department of Natural Resources neither guarantee nor warrant the standard of a product and imply no approval of a product to the exclusion of others that may be suitable. The authors express appreciation to the crew of the R. V. Laurentian for assistance in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Millie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millie, D.F., Fahnenstiel, G.L., Dyble Bressie, J. et al. Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity, and environmental influences. Aquat Ecol 43, 915–934 (2009). https://doi.org/10.1007/s10452-009-9238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9238-7

Keywords

Navigation