Skip to main content

Advertisement

Log in

The geospatial relationship of geologic strata, geological fractures, and land use attained by a time-series aridity index in a semiarid region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In a vast semiarid region of the Baja California Peninsula, remote sensing and GIS techniques were applied to moderate resolution images of Landsat 5 TM to explore the geospatial correlation among the grid aridity index (AI), shapefiles of geologic strata, land use, and geological fractures. A dataset of randomized sample points in a time-series of one hydrologic year along with vector file GIS delineated geologic fractures—including the area between their left/right parallel buffer lines—was used as mask analysis. MANOVA results were significant (p < 0.05) for geologic strata, land use, and basin. Overall results reveal the effects of soil texture on water retention on deeper soil horizons and the rate of vertical motion of rainwater. Despite the fact that geologic fractures underlie a large number of biotic communities, in both latitude and longitude gradients of the peninsula, no statistical significance was observed among the fractures themselves or the areas between their parallel buffer lines. One pulse rainfall event was documented by the AI grid maps enabling a robust vegetative response in early summer to an abnormal amount of rain provided by tropical storm Julio. AI grids appear to be useful for characterizing an ecosystem’s dynamism. New options are suggested for this research strategy by expanding the number of datasets and incorporating geographic exclusion areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott, M. B., & Refsgaard, J. C. (1996). Distributed hydrological modelling. Dordrecht:Kluwer Academic Publishers.

    Book  Google Scholar 

  • Aich, S., & Gross, M. R. (2008). Geospatial analysis of the association between bedrock fractures and vegetation in an arid environment. International Journal of Remote Sensing, 29(23), 6937–6955.

    Article  Google Scholar 

  • Anderson, W. B., Wait, D. A., & Stapp, P. (2008). Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology, 89, 660–670.

    Article  Google Scholar 

  • Arora, V. K. (2002). The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology 265(1–4), 164–177.

  • Balba, A. M. (1995) Management of problem soils in arid ecosystems. CRC Press, 250 p

  • Bedford, D.R., Miller, D.M., Schmidt, K.M., & Phelps, G.A. (2009). Landscape-scale relationships between superficial geology, soil texture, topography and creosote bush size and density in the eastern Mojave Desert of California, in: Webb, R.H., Fenstermaker, L., Heaton, J.S., Hughson, D.L., McDonald, E.V., Miller, D.M. (Eds.), The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp. 252-277.

    Google Scholar 

  • Burgan, R.E., & Hartford, R.A. (1993). Monitoring vegetation greenness with satellite data, Gen. Tech. Rep.DNT-297, U.S.Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, Utah, 13 p.

  • Burgheimer, J., Wilske, B., Maseyk, K., Karnieli, A., Zaady, E., Yakir, D., & Kesselmeier, J. (2006). Relationships between normalized difference vegetation index (NDVI) and carbon fluxes of biologic soil crusts assessed by ground measurements. Journal of Arid Environments, 64, 651–669.

    Article  Google Scholar 

  • Cao, M., Stephen, D. P., Small, J., & Goetz, S. J. (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7, 233–242.

    Article  Google Scholar 

  • Chesson, P., Gebauer, RL, Schwinning S, Huntly N., Wiegand K., Ernest, MS., Sher, A., Novoplansky A., Weltzin, JF (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253.

    Article  Google Scholar 

  • Cotton and Western Minning, Inc. (2008). Baja California geological summary. Magnetite seams of the Guadalupe iron mine. http://gaskinsco.com/crwn-baja.pdf [Accessed: 11 September 2013]

  • Coughenour, M. B., & Chen, D. (1997). Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process model. Ecological Applications, 7, 802–827.

    Google Scholar 

  • Daesslé, L. W., Ruiz-Montoya, H. J., Tobschall, R., Chandrajith, R., Camacho-Ibar, V. F., Mendoza-Espinoza, L. G., Quintanilla-Montoya, A. L., & Lugo-Ibarra, K. C. (2008). Fluoride, nitrate and water hardness in groundwater supplied to the rural communities of Ensenada County, Baja California. Mexico Environ Geol. doi:10.1007/s00254-008-1512-9.

    Google Scholar 

  • Dettinger, M. (2004). Fifty-two years of “pineapple express” storms across the west coast of North America. U.S. Geological Survey, Scripps Institution of Oceanography for the California Energy Commission, Public Interest Energy Program, pp. 1–20.

  • Douglas, M. W., Maddox, R. A., Howard, K., & Reyes, S. (1993). The Mexican monsoon. Journal of Climate, 6, 1665–1677.

    Article  Google Scholar 

  • Franco-Vizcaino, E., Graham, R. C., & Alexander, E. B. (1993). Plant species diversity and chemical properties of soils in the central desert of Baja California, Mexico. Soil Science, 155, 406–416.

    Article  CAS  Google Scholar 

  • Gao, B. C. (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

    Article  Google Scholar 

  • Gastil, R.G., Phillips, R.P., & Allison, E.C. (1975). Reconnaissance geology of the state of Baja California. Geological Society of America Memoir 140.

  • Gourley, J. J., & Vieux, B. E. (2006). A method for identifying sources of model uncertainty in rainfall-runoff simulations. Journal of Hydrology, 327(1–2), 68–80.

    Article  Google Scholar 

  • Graham, R. C., & Franco-Vizcaino, E. (1992). Soils on igneous and metavolcanic rocks in the Sonoran Desert of Baja California. Geoderma, 54, 1–21.

    Article  CAS  Google Scholar 

  • Hanson, B. C. (1972). Fracture analysis employing remote sensing techniques for groundwater movement with environmental applications: preliminary report. Arkansas Academy of Science Proceedings, 26, 41–42.

    Google Scholar 

  • Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77−83.

  • He, X., Vejen, F., Stisen, S., Sonnenborg, T. O., & Jensen, K. H. (2011). An operational weather radar-based quantitative precipitation estimation and its application in catchment water resources modeling. Vadose Zone Journal, 10(1), 8–24.

    Article  Google Scholar 

  • Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Diraswammy, P., & Hunt, R. E. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92, 475–482.

    Article  Google Scholar 

  • Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. New York:McGraw-Hill Book Co. Inc..

    Google Scholar 

  • Karnielli, A., Kidron, G. J., Glaesser, C., & Ben-dor, E. (1999). Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sensing of Environment, 69(1), 67–75.

    Article  Google Scholar 

  • Kogan, E. N. (1990). Remote sensing of weather impacts on vegetation. International Journal of Remote Sensing, 11, 1405–1419.

    Article  Google Scholar 

  • Kogan, E. N. (1995). Droughts of the late 1980’s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76, 655–668.

    Article  Google Scholar 

  • Kurtzman, D., Navon, S., & Morin, E. (2009). Improving interpolation of daily precipitation for hydrologic modelling: spatial patterns of preferred interpolators. Hydrological Processes, 23, 3281–3291.

    Article  Google Scholar 

  • Liang, S., Rui, S., Xiaowen, L., Huailiang, C., & Xuefen, Z. (2011). Estimating evapotranspiration using improved fractional vegetation cover and land surface temperature space. Journal Resource Ecology, 2(3), 225–231.

    Google Scholar 

  • Matin, S. & Goswami, S.B. (2012). Dryland characterization through geospatial techniques: a review. International Journal of Remote Sensing and Geoscience, 1 (1), 34-41.

  • Maxwell, R. M. (2010). Infiltration in arid environments: spatial patterns between subsurface heterogeneity and water-energy balances. Vadose Zone Journal. doi:10.2136/vzj2010.0014.

    Google Scholar 

  • Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N., Duff, C. J., McDowell, N. G., Phillips, F. M., Scanlon, B. R., & Vivoni, E. R. (2006). Ecohydrology of water-limited environments: a scientific vision. Water Resources Research. doi:10.1029/2005wr004141.

    Google Scholar 

  • NIST/SEMATECH (2015). E-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/ [Accessed: 02 May 2015].

  • Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25–51.

    Article  Google Scholar 

  • Peters, A. J., WalterShea, E. A., Ji, L., Viña, A., Hayes, M., & Svoboda, M. D. (2002). Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering & Remote Sensing, 268(1), 71–75.

    Google Scholar 

  • Polly, H. W., Jonson, H. B., & Derner, J. D. (2005). Increasing CO2 from subambient to superambient concentrations alters species composition and increases above-ground biomass in C3/C4 grassland. New Phytologist, 160, 319–327.

    Article  Google Scholar 

  • Reyes, S., & Mejía-Trejo, A. (1991). Tropical perturbations in the eastern Pacific and the precipitation field over north-western Mexico in relation to the ENSO phenomenon. International Journal of Climatology, 11, 515–528.

    Article  Google Scholar 

  • Rodrìguez-Moreno VM & Bullock, S. H. (2015). Vegetation response to rainfall pulses in a semiarid region of Baja California. International Journal of Climatology, 34, 3967-3976.

  • Rodríguez-Moreno, V.M. & Bullock, S.H. (2013). Comparison of vegetation indexes in the Sonoran desert incorporating soil and moisture indicators and application to estimates of LAI. Revista Mexicana de Ciencias agrícolas, 4(4), 611-623.

  • Royston, J. P. (1995). A remark on algorithm AS181: the W-test for normality. Applied Statistics, 44, 547–551.

    Article  Google Scholar 

  • Sawunyama, T., & Hughes, D. A. (2008). Application of satellite-derived rainfall estimates to extend water resource simulation modelling in South Africa. Water SA, 34, 1–9.

    Google Scholar 

  • Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrobiological Journal, 10, 18–39.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Keese, K., Reedy, R. C., Šimůnek, J., & Andraski, B. J. (2003). Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainities. Water Resources Research. doi:10.1029/2002WR001604.

    Google Scholar 

  • Scanlon, B. R., Levitt, D. G., Reedy, R. C., Keese, K. E., & Sully, M. J. (2005). Ecological controls on water-cycle response to climate variability in deserts. Proceedings of the National Academy of Sciences, 102, 6033–6038.

    Article  CAS  Google Scholar 

  • Schwinning, S., & Sala, E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211–220.

    Article  Google Scholar 

  • Sonderegger, J. L. (1970). Hydrology of limestone terrains. Alabama Geological Survey Division Water Resources Bull, 94, 1–27.

    Google Scholar 

  • Taesombat, W., & Sriwongsitanon, N. (2009). Areal rainfall estimation using spatial interpolation techniques. Science Asia, 35, 268–275.

    Article  Google Scholar 

  • Tuğrul, A. (2004). The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Engineering Geology, 75, 215–227.

    Article  Google Scholar 

  • Tweed, S. O., Leblanc, M., Webb, J. A., & Lubczynski, M. W. (2006). Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeology Journal, 15, 75–96.

    Article  Google Scholar 

  • Walvoord, M. A., Plummer, M. A., Phillips, F. M., & Wolfsberg, A. V. (2002). Deep arid system hydrodynamics: 1. Equilibrium states and response times in thick desert vadose zones. Water Resources Research. doi:10.1029/2001WR000824.

    Google Scholar 

  • Wang, H., Kgotlhang, L. & Kinzelbach, W. (2008). Using remote sensing data to model groundwater recharge potential in Kanye region, Botswana. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37, Part B8. Beijing 2008.

  • West, N. E. (1990). Structure and function of microphytic soil ISSS International Symposium (Working Groups RS and crust in wildland ecosystems of arid to semi-arid regions. DM) on Monitoring Soils in the Environment with Remote Adv. Ecological Research, 20, 179–223.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), and the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) for supporting and funding this study. Special recognition goes to Walter Weerts for his advice on English grammar and paragraph structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Rodríguez-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Moreno, V.M., Kretzschmar, T.G. & Padilla-Ramírez, J... The geospatial relationship of geologic strata, geological fractures, and land use attained by a time-series aridity index in a semiarid region. Environ Monit Assess 187, 457 (2015). https://doi.org/10.1007/s10661-015-4676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4676-2

Keywords

Navigation