Skip to main content

Advertisement

Log in

Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface-water and groundwater resource management, and ecosystem protection. In this study, a synergistic approach has been developed, which applies a combination of remote sensing and geographic information system (GIS) techniques to map groundwater recharge and discharge areas. This approach is applied to an unconfined basalt aquifer, in a salinity and drought prone region of southeastern Australia. The basalt aquifer covers ~11,500 km2 in an agriculturally intensive region. A review of local hydrogeological processes allowed a series of surface and subsurface indicators of groundwater recharge and discharge areas to be established. Various remote sensing and GIS techniques were then used to map these surface indicators including: terrain analysis, monitoring of vegetation activity, and mapping of infiltration capacity. All regions where groundwater is not discharging to the surface were considered potential recharge areas. This approach, applied systematically across a catchment, provides a framework for mapping recharge and discharge areas. A key component in assigning surface and subsurface indicators is the relevance to the dominant recharge and discharge processes occurring and the use of appropriate remote sensing and GIS techniques with the capacity to identify these processes.

Résumé

Sur un bassin versant, l’identification des zones d’alimentation et des aires d’émergence des eaux souterraines est capitale pour mettre en œuvre des stratégies de réduction de la salinité, de gestion des eaux souterraines et superficielles, et de protection des écosystèmes. Une approche synergique a été développée, sur la base de recherches existantes pour cartographier de manière systématique les zones de recharge et d'émergence. Elle combine des techniques de télédétection et de Systèmes d’Information Géographique, dans le but de cartographier les zones d’alimentation et d’émergence. Ces techniques ont été appliquées à un aquifère basaltique libre, dans un secteur sujet à la sécheresse et à la salinité du Sud-Est australien. L’aquifère considéré couvre environ 11,500 km2 d’une région essentiellement agricole. Un inventaire des processus hydrogéologiques locaux a conduit à l’établissement d’une série d’indicateurs superficiels et subsuperficiels des zones d’alimentation et d’émergence. Plusieurs méthodes de télédétection et de SIG furent alors utilisées pour cartographier ces indicateurs de surface, y compris les analyses de terrain, le suivi de l’activité de la végétation et la cartographie des capacités d’infiltration. Toutes les régions en dehors des zones d'émergence sont considérées commes des zones d'alimentation potentielles. Un des composants clés de l’attribution des indicateurs superficiels et subsuperficiels est la concordance avec les processus majeurs d’alimentation et de prélèvement entrant en jeu, et l’utilisation de méthodes de télédétection et SIG adaptées permettant d’identifier ces processus.

Resumen

La identificación de áreas de descarga y recarga de agua subterránea es crítica para la implementación de estrategias efectivas relacionadas con mitigación de salinidad, gestión de recursos de agua subterránea y agua superficial, y protección de ecosistemas. En este estudio se ha desarrollado un enfoque sinérgico apoyándose en investigación existente el cual aplica una combinación de técnicas de sistemas de información geográfico (SIG) y sensores remotos para cartografiar áreas de recarga y descarga de agua subterránea. Este enfoque se aplica a un acuífero de basalto no confinado en una región del sureste de Australia propensa a sequía y salinidad. El acuífero de basalto cubre aproximadamente 11,500 km2 en una región con agricultura intensiva. Una revisión de los procesos hidrogeológicos locales permitió el establecimiento de una serie de indicadores superficiales y subterráneos de áreas de recarga y descarga de agua subterránea. Luego se utilizaron varias técnicas de SIG y sensores remotos para cartografiar estos indicadores superficiales incluyendo: análisis del terreno, monitoreo de la actividad de la vegetación, y cartografiado de la capacidad de infiltración. Todas las regiones donde el agua subterránea no descarga en la superficie fueron consideradas áreas potenciales de recarga. Este enfoque que se ha aplicado sistemáticamente a través de la cuenca aporta un marco para la cartografía de áreas de recarga y descarga. Un componente clave en la asignación de indicadores superficiales y subterráneos lo constituye la relevancia a los procesos dominantes de recarga y descarga que ocurren y el uso de técnicas apropiadas de SIG y sensores remotos con la capacidad para identificar esos procesos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23:303–324

    Article  Google Scholar 

  • Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119:1–20

    Article  Google Scholar 

  • Bastiaanssen WGM, Molden DJ, Makin IW (2000) Remote sensing for irrigated agriculture: examples from research and possible applications. Agric Water Manage 46:137–155

    Article  Google Scholar 

  • Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275:86–108

    Article  Google Scholar 

  • Bennetts DA, Webb JA (2004) Processes affecting groundwater quality in a basalt aquifer system in southern Australia. Proceedings of the Eleventh International Symposium on Water-Rock Interaction WRI-11, June 2004, Saratoga Springs, NY, pp 347–351

  • Bennetts DA, Webb JA, Gray CM (2003) Distribution of Plio-Pleistocene basalts and regolith around Hamilton, western Victoria, and their relationship to groundwater recharge and discharge. Proceedings from Advances in Regolith, CRC LEME, Perth, Australia, pp 11–15

  • Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323:178–192

    Article  Google Scholar 

  • Benyon RG, Theiveyanathan S, Doody TM (2006) Impacts of tree plantations on groundwater in south-eastern Australia. Aust J Bot 54:181–192

    Article  Google Scholar 

  • Bierwirth PN, Welsh WD (2000) Delineation of recharge beds in the Great Artesian Basin using airborne gamma-radiometrics and satellite remote sensing. Report for the National Landcare Program, Bureau of Rural Sciences, Canberra, Australia, p 33

  • Bobba AG, Bukata RP, Jerome JH (1992) Digitally processed satellite data as a tool in detecting potential groundwater flow systems. J Hydrol 131:25–62

    Article  Google Scholar 

  • Bogena H, Kunkel R, Schöbel T, Schrey HP, Wendland F (2005) Distributed modeling of groundwater recharge at the macroscale. Ecol Model 187:15–26

    Google Scholar 

  • Brunner P, Bauer P, Eugster M, Kinzelback W (2004) Using remote sensing to rationalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294:241–250

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19:1233–1254

    Article  Google Scholar 

  • Cermak J, Kucera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546

    Article  Google Scholar 

  • Dehaan RL, Taylor GR (2002) Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens Environ 80:406–417

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2005) ArcGIS 9.0. ESRI, Redlands, CA

  • Facchi A, Ortuani B, Maggi D, Gandolfi C (2004) Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environ Model Softw 19:1053–1063

    Article  Google Scholar 

  • Falkiner RA, Nambiar EKS, Polglase PJ, Theiveyanathan S, Stewart LG (2006) Root distribution of Eucalyptus grandis and Corymbia maculata in degraded saline soils of south-eastern Australia. Agrofor Syst 67:279–291

    Article  Google Scholar 

  • Fritch TG, McKnight CL, Yelderman JC Jr, Arnold JG (2000) Environmental auditing: an aquifer vulnerability assessment of the Paluxy Aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manage 25(3):337–345

    Article  Google Scholar 

  • Goodrich DC, Scott R, Qi J, Goff B, Unkrich CL, Moran MS, Williams D, Schaeffer S, Snyder K, MacNish R, Maddock T, Pool D, Chehbouni A, Cooper DI, Eichinger WE, Shuttleworth WJ, Kerr Y, Marsett R, Ni W (2000) Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. Agric For Meteorol 105:281–309

    Article  Google Scholar 

  • Gowing JW, Konukcu F, Rose DA (2006) Evaporative flux from a shallow water table: the influence of a vapour-liquid phase transition. J Hydrol 321:77–89

    Article  Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FW (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52:41–52

    Article  Google Scholar 

  • Hoffmann J (2005) The future of satellite remote sensing in hydrogeology. Hydrogeol J 13:247–250

    Article  Google Scholar 

  • Howari FM (2003) The use of remote sensing data to extract information from agricultural land with emphasis on soil salinity. Aust J Soil Res 41:1243–1253

    Article  Google Scholar 

  • Ierodiaconou D, Laurenson L, Leblanc M, Stagnitti F, Duff G, Salzman S, Versace V (2005) The consequences of land use change on nutrient exports: a regional scale assessment in south-west Victoria, Australia. J Environ Manage 74:305–316

    Article  Google Scholar 

  • ITT Visual Information Solutions (2005) ENVI 4.2, http://www.ittvis.com. Cited 8 November 2006

  • Jackson TJ (2002) Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeol J 10:40–51

    Article  Google Scholar 

  • Joyce EB (1999) A new regolith landform map of the western Victorian volcanic plains, Victoria, Australia. In: Taylor G, Pain C (eds) Regolith ‘98, Australian regolith and mineral exploration: new approaches to an old continent. Proceedings, 3rd Australian Regolith Conference, Kalgoorlie, 2–9 May 1998, CRC LEME, Perth, pp 117–126

  • Kishel HF, Gerla PJ (2002) Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA. Hydrol Process 16:1921–1934

    Article  Google Scholar 

  • Leaney FW, Mustafa S, Lawson J (2005) Salt accumulation and water balance under different land use in Bakers Range area. CSIRO Land and Water Science Report 05/06, CSIRO, Clayton South, Australia

  • Leblanc M, Leduc C, Razack M, Lemoalle J, Dagorne D, Mofor L (2003a) Application of remote sensing and GIS for groundwater modelling of large semiarid areas: example of the Lake Chad Basin, Africa. Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France, April 2003, IAHS (Red Books Series), Wallingford, UK, no. 278, pp 186–192

    Google Scholar 

  • Leblanc M, Razack M, Dagorne D, Mofor L, Jones C (2003b) Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa. Geophys Res Lett 30(19):1998. DOI 10.1029/2003GL018094

    Article  Google Scholar 

  • Lubczynski MW, Gurwin J (2005) Integration of various data sources for transient groundwater modelling with spatio-temporally variable fluxes: Sardon study case, Spain. J Hydrol 306:71–96

    Article  Google Scholar 

  • McFarlane DJ, Williamson DR (2002) An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’ experimental catchment. Agric Water Manage 53:5–29

    Article  Google Scholar 

  • Meijerink AMJ (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci 41(4):549–561

    Google Scholar 

  • Metternicht G, Zinck JA (1997) Spatial discrimination of salt- and sodium-affected soil surfaces. Int J Remote Sens 18(12):2571–2586

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Moore ID, Grayson RB, Landson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Munro M (2000) Salinity discharge in the Glenelg Hopkins CMA region. Department of Natural Resources and Environment, Casterton, Australia, 29 pp

    Google Scholar 

  • Rango A, Shalaby AI (1998) Operational applications of remote sensing in hydrology: success, prospects and problems. Hydrol Sci 43(6):947–968

    Article  Google Scholar 

  • Salama R (1998) Physical and chemical techniques for discharge studies, part 1. In: Zhang L, Walker G (eds) The Basics of recharge and discharge, CSIRO, Clayton, Australia. pp 1–29

  • Salama R, Tapley I, Ishii T, Hawkes G (1994) Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques. J Hydrol 162:119–141

    Article  Google Scholar 

  • Salama R, Hatton T, Dawes W (1999) Predicting land use impacts on regional scale groundwater recharge and discharge. J Environ Qual 28:446–460

    Article  Google Scholar 

  • Sander P, Chesley MM, Minor TB (1996) Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: lessons learned. Hydrogeol J 4(3):40–49

    Article  Google Scholar 

  • Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834

    Article  Google Scholar 

  • Spies B, Woodgate P (2005) Salinity mapping methods in the Australian context. Prepared for the Natural Resource Management Ministerial Council through Land and Water Australia and the National Dryland Salinity Program, Canberra, Australia

  • Su Z (2006) Estimation of the surface energy balance. In: Anderson MG (ed) Remote sensing, part 5. Encyclopedia of hydrological sciences, Wiley, New York. DOI 10.1002/0470848944.hsa068

  • Tam VT, De Smedt F, Batelaan O, Dassargues A (2004) Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeol J 12:662–673

    Article  Google Scholar 

  • Tcherepanov EN, Zlotnik VA, Henebry GM (2005) Using Landsat thermal imagery and GIS for identification of groundwater discharge into shallow groundwater-dominated lakes. Int J Remote Sens 26(17):3649–3661

    Article  Google Scholar 

  • Thorburn PJ, Walker GR, Woods PH (1992) Comparison of diffuse discharge from shallow water tables in soils and salt flats. J Hydrol 136:253–274

    Article  Google Scholar 

  • UNEP (1992) World atlas of desertification. Arnold, London, 69 pp

    Google Scholar 

  • Versace V, Ierodiaconou D, Salzman S, Stagnitti F, Leblanc M, Boland A, Laurenson L, March T, Thwaites L (2005) Multivariate modelling of land use on in-stream salinity over multiple spatial scales. In: Water resources management III. Series: Progress in Water resources, vol 1, Wessex Institute of Technology, UK

  • Vieux BE (1995) DEM aggregation and smoothing effects on surface runoff modeling, Chap 15. In: Lyon JG, McCarthy J (eds) Wetland and environmental applications of GIS, Lewis, Boca Raton, FL

  • Weaver TR, Bush A, Singh T, Cartwright I, Irvine E (2004) Models for development of dryland salinity, Murray Basin, Australia. In: Wanty R, Seal II R (eds) Proceedings water–rock interaction 11, Balkema, Lisse, The Netherlands, pp 519–522

  • Wilson JP, Gallant JC (2000) Digital terrain analysis, chap 1.. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 1–27

  • Woods R (2006) Hydrologic concepts of variability and scale, In: Anderson MG (ed) Encyclopedia of hydrological sciences, part 1. Theory, organization and scale, Wiley, New York. DOI 10.1002/0470848944.hsa002

Download references

Acknowledgements

This study was funded by the Australian National Action Plan (NAP). The authors also wish to acknowledge input from researchers at Deakin (Frank Stagnitti and Daniel Ierodiaconou), La Trobe (Darren Bennetts and Matthias Raiber), Melbourne (Bernie Joyce), and Monash (Ray Cas) Universities, and the comments from the guest editor and reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah O. Tweed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tweed, S.O., Leblanc, M., Webb, J.A. et al. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol J 15, 75–96 (2007). https://doi.org/10.1007/s10040-006-0129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0129-x

Keywords

Navigation