Skip to main content
Log in

Heavy metals fractionation and risk assessment in surface sediments of Qarun and Wadi El-Rayan Lakes, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study establishes a baseline for trace metal speciation in Qarun and Wadi El-Rayan lakes. A five-step sequential extraction procedure was applied for the speciation of the Fe, Mn, Zn, and Cu in sediment samples collected at Qarun and Wadi El-Rayan lakes. Mn and Cu were the most mobile metals, whereas the residue fraction maintained the highest concentrations of Zn and Fe (≈60 %). No significant differences in metal concentrations were detected in the sediments of each lake sites, despite of the large distance between them (P > 0.05). Hazardous discharge sources are responsible for the high accumulation of metals in the nonresidual fractions. Qarun Lake showed high mobility factor for all studied metals than Wadi El-Rayan lakes; as such, all the humans, plants, animals and the general biota within the vicinity of this aquatic system are quite vulnerable to the trace metal exposure. According to geoaccumulation index (I-geo), the studied sediments were practically uncontaminated by Fe and Mn and classified as uncontaminated to moderately contaminated with Cu in Qarun and Zn in Wadi El-Rayan lakes. The low values of load pollution index (<1), confirmed the unpolluted condition of the lakes’ superficial sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Moati, A. R. (1990). Speciation and behavior of arsenic in the Nile Delta Lakes. Water, Air, and Soil Pollution, 51, 117–132.

    Article  CAS  Google Scholar 

  • Abdel-Satar, A. M., & Sayed, M. F. (2010). Sequential fractionation of phosphorus in sediments of El-Fayum Lakes- Egypt. Environmental Monitoring and Assessment, 169, 169–178.

    Article  CAS  Google Scholar 

  • Abdel-Satar, A. M., Goher, M. E., & Sayed, M. F. (2010). Recent environmental changes in water and sediment quality of Lake Qarun, Egypt. Journal of Fisheries and Aquatic Science, 5(2), 56–69.

    Article  CAS  Google Scholar 

  • Abu-Rukah, Y., & Ghrefat, H. A. (2001). Assessment of the anthropogenic influx of metallic pollutants in Yarmouk River, Jordan. Environmental Geology, 40, 683–692.

    Article  CAS  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37, 813–822.

    Article  CAS  Google Scholar 

  • Arias, R., Barona, A., Ibarra-Berastegi, G., Aranguiz, I., & Elías, A. (2008). Assessment of metal contamination in dregded sediments using fractionation and Self-Organizing Maps. Journal of Hazardous Materials, 151, 78–85.

    Article  CAS  Google Scholar 

  • Belzile, N., Chen, Y., Gunn, J., & Dixit, S. (2004). Sediment trace metal profiles in lakes of Killarney Park, Canada: from regional to continental influence. Environmental Pollution, 130, 239–248.

    Article  CAS  Google Scholar 

  • Calmano, W., & Forstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. Science of the Total Environment, 28, 77–90.

    Article  CAS  Google Scholar 

  • Cevik, F., Göksu, M. Z., Derici, O. B., & Fýndýk, O. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1-4), 309–317.

    Article  CAS  Google Scholar 

  • Chakravarty, M., & Patgiri, A. D. (2009). Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27(1), 63–67.

    Google Scholar 

  • El-Shabrawy, G. M., & Dumont, H. J. (2009). The Fayum Depression and Its Lakes. In The Nile: origin, environments, limnology, and human use. In H. J. Dumont (Ed.), Monographiae Biologicae 89 (pp. 95–124). Ghent: Springer.

    Google Scholar 

  • El-Shabrawy, G. M., Goher, M. E., Germoush, M. O. & Anufriieva, E. V. (2014). Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?. Chinese Journal of Oceanology and Limnology, ID CJOL-2014-Dec-0361. In press.

  • Fouda, M. & Fishar, M. (2012). Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version. http://www.ramsar.org/ris/key_ris_index.htm.

  • Fytianos, K., & Lourantou, A. (2004). Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environment International, 30, 11–17.

    Article  CAS  Google Scholar 

  • Hamed, M. A., & Okbah, M. A. (2006). Trace metals speciation in sediments of Lake Manzala, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 10(3), 137–164.

    Google Scholar 

  • Jackwerth, E., & Würfels, M. (1994). Der Druckaufschluß - Apparative Möglichkeiten, Probleme und Anwendungen’. In M. Stoeppler (Ed.), Probennahme und Aufschluß (pp. 121–138). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Kumar, A., Ramanathan, A. L., Prabha, S., Ranjan, R. K., Ranjan, S., & Singh, G. (2012). Metal speciation studies in the aquifer sediments of SemriaOjhapatti, Bhojpur District, Bihar. Environmental Monitoring and Assessment, 184, 3027–3042. doi:10.1007/s10661-011-2168-6.

    Article  CAS  Google Scholar 

  • Lesmes, L. E. (1996). Estudio de un factor de movilidad en geoquímica ambiental. Environ. Geochem. in Tropical Countries. 2nd International Symposium. Cartagena, Colombia

  • Masoud, M. S., Fahmy, M. A., Ali, A. E., & Mohamed, E. A. (2011). Heavy metal speciation and their accumulation in sediments of Lake Burullus, Egypt. African Journal of Environmental Science and Technology, 5(4), 280–298.

    Google Scholar 

  • Mohan, M., Augustine, T., Jayasooryan, K. K., Chandran, M. S. S., & Ramasamy, E. V. (2012). Fractionation of selected metals in the sediments of Cochin estuary and Periyar River, southwest coast of India. Environmentalist, 32, 383–393.

    Article  Google Scholar 

  • Moore, F., Nematollahi, M. J., & Keshavarzi, B. (2015). Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environmental Monitoring and Assessment, 187, 4117. doi:10.1007/s10661-014-4117-7.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Garcia, I. (2004). Heavy metals distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264.

    Article  CAS  Google Scholar 

  • Ogunfowokan, A. O., Oyekunle, J. A. O., Olutona, G. O., Atoyebi, A. O., & Lawal, A. (2013). Speciation study of heavy metals in water and sediments from Asunle River of the Obafemi Awolowo University, Ile-Ife, Nigeria. International Journal of Environmental Protection, 3(3), 6–16.

    Google Scholar 

  • Ong, M. C., Menier, D., Shazili, N. A. M., & Kamaruzzaman, B. Y. (2013). Geochemical characteristics of heavy metals concentration in sediments of Quiberon Bay Waters, South Brittany, France. Oriental Journal of Chemistry, 29(1), 39–45.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M. L., & Oro, A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy Metals in the Environment (pp. 454–456). Edinburgh: CEP Consultants.

    Google Scholar 

  • Prica, M., Dalmacija, B., Dalmacija, M., Agbaba, J., Krcmar, D., Trickovic, J., & Karlovic, E. (2010). Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Ecotoxicology and Environmental Safety, 73, 1370–1377.

    Article  CAS  Google Scholar 

  • Ramirez, M., Serena, M., Frache, R., & Correa, J. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.

    Article  CAS  Google Scholar 

  • Rao, C. R. M., Sahuquilloa, A., & Sanchez, J. F. L. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291–333.

    Article  CAS  Google Scholar 

  • Rendina, A., de Cabo, L., Arreghini, S., Bargiela, M., & Fabrizio de Iorio, A. (2001). geochemical distribution and mobility factors of zn and cu in sediments of the Reconquista River, Argentina. Revista Internacional de Contaminación Ambiental, 17(4), 187–192.

    CAS  Google Scholar 

  • Sayed, M. F., & Abdel-Satar, A. M. (2009). Chemical assessment of Wadi El-Rayan Lakes – Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences, 5(1), 53–62.

    CAS  Google Scholar 

  • Seshan, B. R. R., Natesan, U., & Deepthi, K. (2010). Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. International Journal of Environmental Science and Technology, 7(2), 291–306.

    Article  CAS  Google Scholar 

  • Shama, S. A., Goher, M. E., Abdo, M. H., Kaial, S. M., & Ahmed, A. A. (2011). Physico-chemical characteristics and heavy metal contents in water of Wadi El-Ryan Lakes, Western desert, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 15(2), 213–228.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tijani, M. N., & Onodera, S. (2009). Hydro geochemical Assessment of metals contamination in an urban drainage system: A case study of Osogbo Township, SW-Nigeria. Journal of Water Resource and Protection, 3, 164–173.

    Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Turki, A. J. (2007). Metal Speciation (Cd, Cu, Pb and Zn) in Sediments from Al Shabab Lagoon, Jeddah, Saudi Arabia. Journal of King Abdulaziz University (Marine Sciences), 18, 191–210.

    Article  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Article  Google Scholar 

  • Wong, C. S. C., Wu, S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2007). Trace metals contamination of sediments in an e-waste processing village in China. Environmental Pollution, 145, 434–442.

    Article  CAS  Google Scholar 

  • Yahaya, M. I., Jacob, A. G., Agbendeh, Z. M., Akpan, G. P., & Kwasara, A. A. (2012). Seasonal potential toxic metals contents of Yauri river bottom sediments: North western Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 4(12), 212–221.

    CAS  Google Scholar 

  • Yang, Z., Wang, Y., Shen, Z., Niu, J., & Tang, Z. (2009). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 166, 1186–1194.

    Article  CAS  Google Scholar 

  • Yang, J., Cao, L., Wang, J., Liu, C., Huang, C., Cai, W., Fang, H., & Peng, X. (2014). Speciation of Metals and Assessment of Contamination in Surface Sediments from Daya Bay, South China Sea. Sustainability, 6, 9096–9113. doi:10.3390/su6129096.

    Article  Google Scholar 

  • Yousry, M. M. (2011). Non-residual heavy metals in Lake Nasser bed sediments, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 15(2), 73–85.

    Google Scholar 

  • Yu, R. L., Yuan, X., Zhao, Y. H., Hu, G. R., & Tu, X. L. (2008). Heavy metal pollution in intertidal sediments from Quanzhou Bay. Chinese Journal of Environmental Science, 20, 664–669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaal Mansour Abdel-Satar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Satar, A.M., Goher, M.E. Heavy metals fractionation and risk assessment in surface sediments of Qarun and Wadi El-Rayan Lakes, Egypt. Environ Monit Assess 187, 346 (2015). https://doi.org/10.1007/s10661-015-4592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4592-5

Keywords

Navigation