Skip to main content

Advertisement

Log in

Discriminant analysis for characterization of hydrochemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Discriminant analysis (DA) was performed on river hydrochemistry data for three seasons (i.e., monsoon (MON), post-monsoon (POM), and pre-monsoon (PRM)) to examine the spatio-temporal hydrochemical variability of two mountain river basins (Muthirapuzha River Basin (MRB) and Pambar River Basin (PRB)) of the southern Western Ghats, India. Although the river basins drain tropical mountainous terrain, climate and degree of anthropogenic disturbances show significant differences (i.e., humid, more disturbed MRB vs semiarid, less disturbed PRB). In MRB, TDS, Na+, pH, Mg2+, and K+ are the attributes responsible for significant hydrochemical variations between the seasons, while Cl, TH, and Na+ are the predictors in PRB. The temporal discriminant models imply the importance of rainfall pattern, relative contribution of groundwater toward stream discharge and farming activities in hydrochemistry between the seasons. Inclusion of hydrochemical attributes (in the temporal discriminant functions) that can be derived from both natural and anthropogenic sources suggests that ionic enrichment strongly depends on the seasons, and is mainly due to the variability in the intensity of anthropogenic activities as well as fluctuations in river discharge. In spatial discriminant models, Cl is the only variable responsible for hydrochemical variations between the basins (during MON), whereas Si discriminates during POM and PRM, implying the role of atmospheric supply, anthropogenic modifications as well as intensity of weathering. In the spatial discrimination models, misclassification of hydrochemistry data between MRB and PRB can be attributed to the overlapping effect of humid climate of MRB extending toward the upstream of (semiarid) PRB. This study underscores the versatility of DA in deciphering the significance of climatic controls on hydrochemical composition of tropical mountain rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., & Keller, K. E. (2004). Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 295(1-4), 47–63. doi:10.1016/j.jhydrol.2004.02.016.

    Article  CAS  Google Scholar 

  • Anshumali, & Ramanathan, A. L. (2007). Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi district, Himachal Pradesh, India. Applied Geochemistry, 22(8), 1736–1747. doi:10.1016/j.apgeochem.2007.03.045.

    Article  CAS  Google Scholar 

  • Ashley, R. P., & Lloyd, J. W. (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. Journal of Hydrology, 39(3-4), 355–364. doi:10.1016/0022-1694(78)90011-2.

    Article  CAS  Google Scholar 

  • Back, W. (1961). Techniques for mapping of hydrochemical facies. United States Geological Survey. Professional Paper, 424-D, 380–382.

    Google Scholar 

  • Berner, E. K., & Berner, R. A. (1996). Global environment: Water, air and geochemical cycles. New Jersey: Prentice-Hall.

    Google Scholar 

  • Berner, R. A., & Berner, E. K. (1997). Silicate weathering and climate. In W. F. Ruddiman (Ed.), Tectonic uplift and climate change (pp. 353–365). New York: Plenum Press.

    Chapter  Google Scholar 

  • Bluth, G. J. S., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10), 2341–2359. doi:10.1016/0016-7037(94)90015-9.

    Article  CAS  Google Scholar 

  • Buell, G. R., & Peters, N. E. (1988). Atmospheric deposition effects on the chemistry of a stream in Northeastern Georgia. Water, Air, and Soil Pollution, 39(3-4), 275–291. doi:10.1007/BF00279474.

    CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.

    Article  Google Scholar 

  • Chandrashekara, U. M., & Sibichan, V. (2006). Logs and snags in a shola forest of Kerala, India. Journal of Mountain Science, 3(2), 131–138. doi:10.1007/s11629-006-0131-8.

    Article  Google Scholar 

  • Chattopadhyay, S., Rani, L. A., & Sangeetha, P. V. (2005). Water quality variations as linked to landuse pattern: a case study in Chalakudy river basin, Kerala. Current Science, 89(12), 2163–2169.

    CAS  Google Scholar 

  • Dalton, M. G., & Upchurch, S. B. (1978). Interpretation of hydrochemical facies by factor analysis. Ground Water, 16(4), 228–233. doi:10.1111/j.1745-6584.1978.tb03229.x.

    Article  CAS  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology (3rd ed.). New York: Wiley.

    Google Scholar 

  • De Luis, M., Gonzalez-Hidalgo, J. C., Ravento, S. J., Sanchez, J. R., & Cortina, J. (1997). Distribucion espacial de la concentracion y agresividad de la lluvia en el territorio de la Comunidad Valenciana. Cuadernos de Geologia, 11(3-4), 33–44.

    Google Scholar 

  • Department of Tourism (2008). Tourist statistics-2008. Department of Tourism, Government of Kerala. Retrieved from https://www.keralatourism.org/tourismstatistics/statistics2008.html.

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948. doi:10.1016/0043-1354(96)00087-5.

    Article  CAS  Google Scholar 

  • Dupre, B., Dessert, C., Oliva, P., Godderis, Y., Viers, J., Francois, L., Millot, R., & Gaillardet, J. (2003). Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geoscience, 335(16), 1141–1160. doi:10.1016/j.crte.2003.09.015.

    Article  CAS  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. A. H. (2005). Standard methods for the examination of water and wastewater, 21st edition. American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF).

  • Galy, A., & France-Lanord, C. (1999). Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159(1-4), 31–60. doi:10.1016/S0009-2541(99)00033-9.

    Article  CAS  Google Scholar 

  • Galy, A., & France-Lanord, C. (2001). Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, 29(1), 23–26. doi:10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Gamble, A., & Babbar-Sebens, M. (2012). On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environmental Monitoring and Assessment, 184(2), 845–875. doi:10.1007/s10661-011-2005-y.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. doi:10.1126/science.170.3962.1088.

    Article  CAS  Google Scholar 

  • GSI. (1992). District resource map, Idukki district, Kerala, part-I, geology and minerals. Kolkata: Geological Survey of India.

    Google Scholar 

  • Gunnell, Y., Radhakrishna, B. P., Eds. (2001). Sahyadri: the great escarpment of the Indian Subcontinent. Memoir 47(1), Geological Society of India, Bangalore.

  • Gurumurthy, G. P., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Udaya Shankar, H. N., & Manjunatha, B. R. (2012). Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300–301, 61–69. doi:10.1016/j.chemgeo.2012.01.016.

    Article  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey, Water Supply Paper 2254.

  • Hill, T., & Neal, C. (1997). Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment. Hydrology and Earth System Sciences, 1(3), 697–715. doi:10.5194/hess-1-697-1997.

    Article  Google Scholar 

  • Jarvie, H. P., Whitton, B. A., & Neal, C. (1998). Nitrogen and phosphorus in east coast British rivers: speciation, sources and biological significance. The Science of the Total Environment, 210/211, 79–109. doi:10.1016/S0048-9697(98)00109-0.

    Article  CAS  Google Scholar 

  • Jenkins, A., Sloan, W. T., & Cosby, B. J. (1995). Stream chemistry in the middle hills and high mountains of the Himalayas, Nepal. Journal of Hydrology, 166(1-2), 61–79. doi:10.1016/0022-1694(94)02600-G.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (3rd ed.). New York: Prentice Hall.

    Google Scholar 

  • Jose, S., Sreepathy, A., Kumar, B. M., & Venugopal, V. K. (1994). Structural, floristic and edaphic attributes of the grassland-shola forests of Eravikulam in peninsular India. Forest Ecology and Management, 65(2-3), 279–291. doi:10.1016/0378-1127(94)90176-7.

    Article  Google Scholar 

  • Koklu, R., Sengorur, B., & Topal, B. (2010). Water quality assessment using multivariate statistical methods—a case study: Melen River System (Turkey). Water Resources Management, 24(5), 959–978. doi:10.1007/s11269-009-9481-7.

    Article  Google Scholar 

  • Koppen, W. (1936). Das geographische system der klimate. In W. Koppen & R. Geiger (Eds.), Handbuch der klimatologie, Vol. 1, Part C. Berlin: Verlag von Gerbruder Borntraeger.

    Google Scholar 

  • Kotti, M. E., Vlessidis, A. G., Thanasoulias, N. C., & Evmiridis, N. P. (2005). Assessment of river water quality in Northwestern Greece. Water Resources Management, 19(1), 77–94. doi:10.1007/s11269-005-0294-z.

    Article  Google Scholar 

  • Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40(4), 744–752. doi:10.1016/j.watres.2005.11.042.

    Article  CAS  Google Scholar 

  • Kumarasamy, P., James, R. A., Dahms, H.-U., Byeon, C.-W., & Ramesh, R. (2014). Multivariate water quality assessment from the Tamiraparani river basin, Southern India. Environmental Earth Sciences , 71(5), 2441–2451. doi:10.1007/s12665-013-2644-0.

    Article  CAS  Google Scholar 

  • Li, S., Gu, S., Tan, X., & Zhang, Q. (2009). Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. Journal of Hazardous Materials, 165(1-3), 317–324. doi:10.1016/j.jhazmat.2008.09.123.

    Article  CAS  Google Scholar 

  • Lopez, F. J. S., Garcia, M. D. G., Vidal, J. L. M., Aguilera, P. A., & Frenich, A. G. (2004). Assessment of metal contamination in Donana National Park (Spain) using Crayfish (Procamburus clarkii). Environmental Monitoring and Assessment, 93(1-3), 17–29. doi:10.1023/B:EMAS.0000016789.13603.e5.

    Article  Google Scholar 

  • Magyar, N., Hatvani, I. G., Szekely, I. K., Herzig, A., Dinka, M., & Kovacs, J. (2013). Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecological Engineering, 55, 82–92. doi:10.1016/j.ecoleng.2013.02.005.

    Article  Google Scholar 

  • Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1988). Chemometrices: A textbook. Amsterdam: Elsevier.

    Google Scholar 

  • Maya, K., Babu, K. N., Padmalal, D., & Seralathan, P. (2007). Hydrochemistry and dissolved nutrient flux of two small catchment rivers, south-western India. Chemistry and Ecology, 23(1), 13–27. doi:10.1080/02757540601084029.

    Article  CAS  Google Scholar 

  • McDowell, W. H., Gines-Sanchez, C., Asbury, C. E., & Perez, C. R. R. (1990). Influence of sea salt aerosols and long range transport on precipitation chemistry at El Verde, Puerto Rico. Atmospheric Environment, Part A: General Topics, 24(11), 2813–2821.

    Article  Google Scholar 

  • Mehto, A., & Chakrapani, G. J. (2013). Spatio-temporal variation in the hydrochemistry of Tawa River, Central India: effect of natural and anthropogenic factors. Environmental Monitoring and Assessment, 185(12), 9789–9802. doi:10.1007/s10661-013-3291-3.

    Article  CAS  Google Scholar 

  • Murphy, S. F., & Stallard, R. F., eds. (2012). Water quality and landscape processes of four watersheds in eastern Puerto Rico. U.S. Geological Survey Professional Paper 1789, 292 p.

  • Nair, N. G. K., Santosh, M., & Thampi, P. K. (1983). Geochemistry and petrogenesis of the alkali granite of Munnar, Kerala (India) and its bearing on rift tectonics. Neues Jahrbuch fuer Mineralogie, Abhandlungen, 148(2), 223–232.

    CAS  Google Scholar 

  • Oliver, J. E. (1980). Monthly precipitation distribution: a comparative index. The Professional Geographer, 32(3), 300–309. doi:10.1111/j.0033-0124.1980.00300.x.

    Article  Google Scholar 

  • Padmalal, D., Remya, S. I., Jissy Jyothi, S., Baijulal, B., Babu, K. N., & Baiju, R. S. (2012). Water quality and dissolved inorganic fluxes of N, P, SO4 and K of a small catchment river in the Southwestern Coast of India. Environmental Monitoring and Assessment, 184(3), 1541–1557. doi:10.1007/s10661-011-2059-x.

    Article  CAS  Google Scholar 

  • Peters, N. E., & Ratcliffe, E. B. (1998). Tracing hydrologic pathways using chloride at the Panola Mountain research watershed, Georgia, USA. Water, Air, and Soil Pollution, 105(1-2), 263–275. doi:10.1023/A:1005082332332.

    Article  CAS  Google Scholar 

  • Petersen, W., Bertino, L., Callies, U., & Zorita, E. (2001). Process identification by principal component analysis of river water-quality data. Ecological Modelling, 138(1-3), 193–213. doi:10.1016/S0304-3800(00)00402-6.

    Article  CAS  Google Scholar 

  • Pinol, J., Avila, A., & Roda, F. (1992). The seasonal variation of streamwater chemistry in three forested Mediterranean catchments. Journal of Hydrology, 140(1-4), 119–141. doi:10.1016/0022-1694(92)90237-P.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasad, M. B. K., & Ramanathan, A. L. (2005). Solute sources and processes in the Achankovil river basin, Western Ghats, southern India. Hydrological Sciences Journal, 50(2), 341–354. doi:10.1623/hysj.50.2.341.61798.

    Article  CAS  Google Scholar 

  • Raj, N., & Azeez, P. A. (2009). Spatial and temporal variation in surface water chemistry of a tropical river, the river Bharathapuzha, India. Current Science, 96(2), 245–251.

    CAS  Google Scholar 

  • Rani, N., Sinha, R. K., Prasad, K., & Kedia, D. K. (2011). Assessment of temporal variation in water quality of some important rivers in middle Gangetic plains, India. Environmental Monitoring and Assessment, 174(1-4), 401–415. doi:10.1007/s10661-010-1465-9.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53(5), 997–1009. doi:10.1016/0016-7037(89)90205-6.

    Article  CAS  Google Scholar 

  • Sheela, A. M., Letha, J., Joseph, S., Chacko, M., Sanal kumar, S. P., & Thomas, J. (2012). Water quality assessment of a tropical coastal lake system using multivariate cluster, principal component and factor analysis. Lakes & Reservoirs: Research and Management, 17(2), 143–159. doi:10.1111/j.1440-1770.2012.00506.x.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464–475. doi:10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Shrestha, S., Kazama, F., & Nakamura, T. (2008). Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River. Journal of Hydroinformatics, 10(1), 43–56. doi:10.2166/hydro.2008.008.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. doi:10.1016/S0043-1354(03)00398-1.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, 38(18), 3980–3992. doi:10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Sojka, M., Siepak, M., Ziola, A., Frankowski, M., Murat-Blazejewska, S., & Siepak, J. (2008). Application of multivariate statistical techniques to evaluation of water quality in the Mala Welna River (Western Poland). Environmental Monitoring and Assessment, 147(1-3), 159–170. doi:10.1007/s10661-007-0107-3.

    Article  CAS  Google Scholar 

  • Soman, K. (2002). Geology of Kerala. Bangalore: Geological Society of India.

    Google Scholar 

  • SSO (2007). Benchmark soils of Kerala. Soil Survey Organization, Department of Agriculture, Government of Kerala, Kerala, India.

  • Stallard, R. F., & Edmond, J. M. (1981). Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(C10), 9844–9858. doi:10.1029/JC086iC10p09844.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. the influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88(C14), 9671–9688. doi:10.1029/JC088iC14p09671.

    Article  CAS  Google Scholar 

  • Stiff, H. A., Jr. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3(10), 15–17. doi:10.2118/951376-G.

    Article  Google Scholar 

  • Thampi, P. K. (1987). Geology of Munnar granite, Idukki district, Kerala, India, Doctoral dissertation. University of Kerala, Kerala, India.

  • Thomas, M. F. (1994). Geomorphology in the tropics: A study of weathering and denudation in low latitudes. New York: Wiley.

    Google Scholar 

  • Thomas, J. (2012). Channel characteristics of two upland river basins of contrasting climate: A study from Kerala, Doctoral dissertation. University of Kerala, Kerala, India.

  • Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometrical aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135–156. doi:10.1080/17538940903464370.

    Article  Google Scholar 

  • Thomas, J., Joseph, S., Thrivikramji, K. P., & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21(6), 1077–1088 pp. doi:10.1007/s11442-011-0901-2.

  • Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences , 66(8), 2353–2366. doi:10.1007/s12665-011-1457-2.

    Article  Google Scholar 

  • Thomas, J., Joseph, S., Thrivikramji, K. P., Manjusree, T. M., & Arunkumar, K. S. (2014). Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India. Environmental Earth Sciences , 71(5), 2333–2351. doi:10.1007/s12665-013-2634-2.

    Article  CAS  Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2015). Hydrogeochemical drivers and processes controlling solute chemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India. In M. Ramkumar, K. Kumaraswamy, & R. Mohanraj (Eds.), Environmental management of river basin ecosystems (pp. 355–396). Heidelberg: Springer-Verlag. doi:10.1007/978-3-319-13425-3_17.

    Chapter  Google Scholar 

  • Varol, M., Gokot, B., Bekleyen, A., & Sen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11–21. doi:10.1016/j.catena.2011.11.013.

    Article  CAS  Google Scholar 

  • White, A. W., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9), 1729–1747. doi:10.1016/0016-7037(95)00078-E.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization, WHO Press.

    Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality, a case study: Suquia river basin (Cordoba, Argentina). Water Research, 35(12), 2881–2894. doi:10.1016/S0043-1354(00)00592-3.

    Article  CAS  Google Scholar 

  • Zhang, S. R., Lu, X. X., Higgitt, D. L., Chen, C. T. A., Sun, H. G., & Han, J. T. (2007). Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. Journal of Geophysical Research, 112(F1), F01011. doi:10.1029/2006JF000493.

    Article  Google Scholar 

Download references

Acknowledgments

The first author (JT) is indebted to late Dr. R. Satheesh (SES, Mahatma Gandhi University, Kerala) for his moral support during the early stages of research career. JT is also thankful to Ms. Manjusree, T.M. (Department of Environmental Sciences), the HOD (Department of Geology), Dr. Manoj Chacko (Department of Statistics), University of Kerala and the Director, Central Ground Water Board, Thiruvananthapuram, for the assistance rendered during chemical and statistical analyses. Financial support from Kerala State Council for Science, Technology, and Environment, Thiruvananthapuram, and permission and logistics for the field studies in the protected areas by Kerala Forest Department are also delightedly acknowledged. We are also grateful to the anonymous reviewers for their critical and helpful comments, which significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobin Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J., Joseph, S. & Thrivikramji, K.P. Discriminant analysis for characterization of hydrochemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India. Environ Monit Assess 187, 365 (2015). https://doi.org/10.1007/s10661-015-4589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4589-0

Keywords

Navigation