Skip to main content

Silicate Weathering and Climate

  • Chapter
Tectonic Uplift and Climate Change

Abstract

There is no doubt that the temperature at the surface of the Earth has not varied excessively since the origin of life. Certainly the stability limits of liquid water have not been exceeded. If CO2 is an important greenhouse gas, as is commonly accepted, this means that its level in the atmosphere has not varied enough to cause excessively low temperatures (resulting, e.g., in the complete freezing of the oceans) or excessively high ones (resulting, e.g., in the sterilization of life). There must be processes regulating CO2 that thermostat the earth and that have prevented it from ending up like Mars and Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans. John Wiley, New York.

    Google Scholar 

  2. Berner, R. A. (1991). Am. J. Sci. 291, p. 339.

    Article  Google Scholar 

  3. Urey, H. C. (1952). The Planets: Their Origin and Development, Yale University Press, New Haven.

    Google Scholar 

  4. Berner, R. A. (1994). Am. J. Sci. 294, p. 56.

    Article  Google Scholar 

  5. Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). J. Geophys. Res. 86, p. 9776.

    Article  Google Scholar 

  6. Berner, R. A., Lasaga, A. C., and Garreis, R. M. (1983). Am. J. Sci. 283, p. 641.

    Article  Google Scholar 

  7. Kasting, J. F. (1984). Am. J. Sci. 284, p. 1175.

    Article  Google Scholar 

  8. Lasaga, A. C., Berner, R. A., and Garrels, R. M. (1985). In: The Carbon Cycle and Atmospheric CO2: Archean to Present (E. Sundquist and W. S. Broecker, eds.), pp. 397–411. American Geophysical Union Geophysics Monograph 32.

    Google Scholar 

  9. Marshall, H. G., Walker, J. C. G., and Kuhn, W. R. (1988). J. Geophys. Res. 93, p. 791.

    Article  Google Scholar 

  10. Volk, T. (1987). Am. J. Sci. 287, p. 763.

    Article  Google Scholar 

  11. Volk, T. (1989). Geology 17, p. 107.

    Article  Google Scholar 

  12. Kump, L. R. (1989). Am. J. Sci. 289, p. 390.

    Article  Google Scholar 

  13. Caldeira, K., and Kasting, J. F. (1992). Nature 360, p. 721.

    Article  Google Scholar 

  14. Godderis, Y., and Francois, L. M. (1995). Chem. Geol. 129, p. 169.

    Article  Google Scholar 

  15. Caldeira, K. (1995). Am. J. Sci. 295, p. 1077.

    Article  Google Scholar 

  16. Kasting, J. F., and Ackerman, T. P. (1986). Science 234, p. 1383.

    Article  Google Scholar 

  17. Berner, R. A. (1992). Geochim. Cosmochim. Acta 56, p. 3225.

    Article  Google Scholar 

  18. Berner, R. A. (1995). In: Chemical Weathering Rates of Silicate Minerals (A. F. White and S. L. Brantley, eds.), pp. 565–583. Mineralogical Society of American Reviews of Mineralogy 31.

    Google Scholar 

  19. Manabe, S., and Stauffer, R. J. (1993). Nature 364, p. 215.

    Article  Google Scholar 

  20. Bazzaz, F. A. (1980). Ann. Rev. Evol. Systematics 21, p. 167.

    Article  Google Scholar 

  21. Staudigel, H., Hart, S. R., Schmincke, H. U., and Smith, B. M. (1989). Geochim. Cosmochim. Acta 53, p. 3091.

    Article  Google Scholar 

  22. Francois, L. M., and Walker, J. C. G. (1992). Am. J. Sci. 292, p. 81.

    Article  Google Scholar 

  23. Edmond, J. M., Palmer, M. R., Measures, C. I, Grant, B., and Stallard, R. F. (1995). Geochim. Cosmochim. Acta 59, p. 3301.

    Article  Google Scholar 

  24. Edmond, J. M., and Huh, Y. (1997). Rev. Geophys. (under review).

    Google Scholar 

  25. Drever, J. I., and Hurcomb, D. R. (1986). Geology 14, p. 221.

    Article  Google Scholar 

  26. Meybeck, M. (1979). Rev. Geol. Dyn. et Geol. Phys. 21, p. 215.

    Google Scholar 

  27. Meybeck, M. (1987). Am. J. Sci. 287, p. 401.

    Article  Google Scholar 

  28. Summerfield, M. A., and Hulton, N. J. (1994). J. Geophys. Res. 99, p. 13871.

    Article  Google Scholar 

  29. Berner, E. K., and Berner, R. A. (1996). Global Environment: Water, Air and Geochemical Cycles, Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  30. Stallard, R. F. (1992). In: Global Biogeochemical Cycles (S. S. Butcher, R. J. Charlson, G. H. Orians, and G. V. Wolfe, eds.), pp. 93–121. Academic Press, New York.

    Chapter  Google Scholar 

  31. Gordeev, V. V., and Sidorov, I. S. (1993). Mar. Chem. 43, p. 33.

    Article  Google Scholar 

  32. Rosen, O. M., Condie, K. C., Natapov, L. M., and Nozhkin, A. D. (1994). In: Archean Crustal Evolution (K. C. Condie, ed.), pp. 411–460. Elsevier, New York.

    Chapter  Google Scholar 

  33. Edmond, J. M. (1993). Geol. Soc. Am. Ann. Meet. Abst. p. 414.

    Google Scholar 

  34. Blum, A. E., and Lasaga, A. C. (1991). Geochim. Cosmochim. Acta 55, p. 2193.

    Article  Google Scholar 

  35. White, A. F., and Blum, A. E. (1995). Geochim. Cosmochim. Acta 59, p. 1729.

    Article  Google Scholar 

  36. Drever, J. L., and Zobrist, J. (1992). Geochim. Cosmochim. Acta 56, p. 3209.

    Article  Google Scholar 

  37. Bluth, G. J. S., and Kump, L. R. (1994). Geochim. Cosmochim. Acta 58, p. 2341.

    Article  Google Scholar 

  38. Gislason, S. R., Arnorsson, S., and Armannsson, H. (1996). Am. J. Sci. 296, p. 837.

    Article  Google Scholar 

  39. Derry, L. A., and France-Lanord, C. (1996). Earth. Planet. Sci. Lett. 142, p. 59.

    Article  Google Scholar 

  40. Jenny, H. (1941). Factors of Soil Formation, McGraw-Hill, New York.

    Google Scholar 

  41. Loughnan, F. C. (1969). Chemical Weathering of the Silicate Minerals. Elsevier, New York.

    Google Scholar 

  42. Birkeland, P. W. (1984). Soils and Geomorphology. Oxford University Press, New York.

    Google Scholar 

  43. Biscaye, P. (1965). Geol. Soc. Am. Bull. 76, p. 803.

    Article  Google Scholar 

  44. White, A. F., and Brantley, S. L. (1995). Chemical Weathering Rates of Silicate Minerals. Mineralogical Society of American Reviews of Mineralogy. 31.

    Google Scholar 

  45. Brady, P. V. (1991). J. Geophys. Res. 96, p. 18101.

    Article  Google Scholar 

  46. Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., and Nagy, K. (1994). Geochim. Cosmochim. Acta 58, p. 2361.

    Article  Google Scholar 

  47. Raymo, M. E., and Ruddiman, W. F. (1992). Nature 359, p. 117.

    Article  Google Scholar 

  48. Yapp, C. J., and Poths, H. (1996). Earth Planet. Sci. Lett. 137, p. 71.

    Article  Google Scholar 

  49. Mora, C. I., Driese, S. G., and Colarusso, L. A. (1996). Science 271, p. 1105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berner, R.A., Berner, E.K. (1997). Silicate Weathering and Climate. In: Ruddiman, W.F. (eds) Tectonic Uplift and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5935-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5935-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7719-1

  • Online ISBN: 978-1-4615-5935-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics