Skip to main content
Log in

Assessing the effects of severe rainstorm-induced mixing on a subtropical, subalpine lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Severe rainstorms cause vertical mixing that modifies the internal dynamics (e.g., internal seiche, thermal structure, and velocity filed) in warm polymictic lakes. Yuan Yang Lake (YYL), a subtropical, subalpine, and seasonally stratified small lake in the north-central region of Taiwan, is normally affected by typhoons accompanied with strong wind and heavy rainfall during the summer and fall. In this study, we used the field data, statistical analysis, spectral analysis, and numerical modeling to investigate severe rainstorm-induced mixing in the lake. Statistical determination of the key meteorological and environmental conditions underlying the observed vertical mixing suggests that the vertical mixing, caused by heat loss during severe rainstorms, was likely larger than wind-induced mixing and that high inflow discharge strongly increased heat loss through advection heat. Spectral analysis revealed that internal seiches at the basin scale occurred under non-rainstorm meteorological conditions and that the internal seiches under the rainstorm were modified on the increase of the internal seiche frequencies. Based upon observed frequencies of the internal seiches, a two-dimensional model was simulated and then appropriate velocity patterns of the internal seiches were determined under non-rainstorm conditions. Moreover, the model implemented with inflow boundary condition was conducted for rainstorm events. The model results showed that the severe rainstorms promoted thermal destratification and changed vertical circulation of the basin-scale, internal seiche motion into riverine flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aota, Y., Kumagai, M., & Kashiwaya, K. (2006). Estimation of vertical mixing based on water current monitoring in the hypolimnion of Lake. Japan Society of Mechanical Engineering, International Journal Series B, 49, 621–625.

    Google Scholar 

  • Arya, S. P. (2001). Introduction to micrometeorology (Vol. 79). New York: Academic.

    Google Scholar 

  • ASAE Standards (1998). EP406.2: heating, cooling, and ventilating greenhouses. American Society of Agricultural Engineers, St. Joseph, USA

  • Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., & van der Vorst, H. (2000). Templates for the solution of algebraic eigenvalue problems. A practical guide. Philadelphia: SIAM.

    Book  Google Scholar 

  • Boltzmann, L. (1884). Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Annalen der Physik und Chemie, 22, 291–294.

    Article  Google Scholar 

  • Byun, D. S., Cho, Y. K., Huh, I. A., & Hart, D. E. (2005). Runoff-induced vertical thermal dynamics in a canyon-shaped reservoir during the summer monsoon. Marine and Freshwater Research, 56(7), 959–968.

    Article  Google Scholar 

  • Chau, K. W., Wu, C. L., & Li, Y. S. (2005). Comparison of several flood forecasting models in Yangtze River. Journal of Hydrological Engineering, ASCE, 10(6), 485–491.

    Article  Google Scholar 

  • Chen, W., & Chau, K. W. (2006). Intelligent manipulation and calibration of parameters for hydrological models. International Journal of Environment and Pollution, 28(3–4), 432–447.

    Article  Google Scholar 

  • Cheng, C. T., Chau, K. W., Sun, Y., & Lin, J. (2005). Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. Lecture Notes in Computer Science, 3498, 1040–1045.

    Article  Google Scholar 

  • Chung, S. W., Hipsey, M. R., & Imberger, J. (2009). Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environmental Modelling and Software, 24(12), 1467–1482.

    Article  Google Scholar 

  • Clark, C. O. (1945). Storage and the unit hydrograph. Transactions of the ASCE, 110, 1419–1446.

    Google Scholar 

  • Colomer, J., Roget, E., & Casamitjana, X. (1996). Daytime heat balance for estimating non-radiative fluxes of Lagoon Banyoles, Spain. Hydrological Processes, 10(5), 721–726.

    Article  Google Scholar 

  • Condie, S. A., & Webster, I. T. (2001). Estimating stratification in shallow water bodies from mean meteorological conditions. Journal of Hydraulic Engineering, ASCE, 124(4), 286–292.

    Article  Google Scholar 

  • Deardoff, J. W. (1970). Convective velocity and temperature scales for unstable planetary boundary layer and for Rayleigh convection. Journal of the Atmospheric Sciences, 27(8), 1211–1213.

    Article  Google Scholar 

  • Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. New York: Academic Press.

    Google Scholar 

  • Frenette, J. J., Vincent, W. F., Legendre, L., & Nagata, T. (1996). Size-dependent phytoplankton responses to atmospheric forcing in Lake Biwa. Journal of Plankton Research, 18(3), 371–391.

    Article  CAS  Google Scholar 

  • Fricker, P. D., & Nepf, H. M. (2000). Bathymetry, stratification, and internal seiche structure. Journal of Geophysical Research, 105(C6), 14237–14251.

    Article  Google Scholar 

  • Gill, A. E. (1982). Atmosphereocean dynamics. San Diego, California, USA: Academic Press.

  • Henderson-Sellers, B. (1986). Calculating the surface energy balance for lake and reservoir modeling: a review. Reviews of Geophysical, 24(3), 625–649.

    Article  Google Scholar 

  • Hicks, B. B. (1972). Some evaluations of drag and bulk transfer coefficients over water bodies of different sizes. Boundary-Layer Meteorology, 3(2), 201–213.

    Article  Google Scholar 

  • Hodges, B. R., Imberger, J., Winters, A., & Saggio, K. (2000). Modeling basin-scale internal waves in a stratified lake. Limnology and Oceanography, 45(7), 1603–1620.

    Article  Google Scholar 

  • Hondzo, M., & Haider, Z. (2004). Boundary mixing in a small stratified lake. Water Resources Research, 40(3), W03101.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). A treatise on limnology. Vol. 1. Geography, physics and chemistry. New York: Wiley. 1015 pp.

    Google Scholar 

  • Hwang, Y. H., Fan, C. W., & Yin, M. H. (1996). Primary production and chemical composition of emergent aquatic macrophytes, Schoenoplectus mucronatus ssp. Robustus and Sparganium fallax, in Lake Yuan-Yang, Taiwan. Botanical Bulletin of Academia Sinica, 37(4), 265–273.

    Google Scholar 

  • Hwang, Y. H., Liou, C. F., & Weng, I. S. (2000). Nutrient dynamics of two aquatic angiosperms in an alpine lake, Taiwan. Botanical Bulletin of Academia Sinica, 41(4), 275–282.

    CAS  Google Scholar 

  • Jones, S. E., Chiu, C. Y., Kratz, T. K., Wu, J. T., Shade, A., & McMahon, K. D. (2008). Typhoons initiate predictable change in aquatic bacterial communities. Limnology and Oceanography, 53(4), 1319–1326.

    Article  Google Scholar 

  • Kalambi, I. B. (2008). A comparison of three iterative methods for the solution of linear equations. Journal of Applied Sciences and Environmental Management, 12(4), 53–55.

    Google Scholar 

  • Kao, W. Y., Chiu, Y. S., & Chen, W. H. (2000). Vertical profiles of CO2 concentration and δ13C values in a subalpine forest of Taiwan. Botanical Bulletin of Academia Sinica, 41(4), 213–218.

    Google Scholar 

  • Kimura, N., Liu, W. C., Chiu, C. Y., & Kratz, T. K. (2012a). The influences of typhoon-induced mixing in a shallow lake. Lakes & Reservoirs: Research and Management., 17(3), 171–183.

    Article  Google Scholar 

  • Kimura, N., Liu, W. C., Chiu, C. Y., Kratz, T. K., & Chen, W. B. (2012b). Real-time observation and prediction of physical processes in a typhoon-affected lake. Paddy and Water Environment, 10(1), 17–30.

    Article  Google Scholar 

  • Kondo, J. (1975). Air–sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorology, 9(1), 91–112.

    Article  Google Scholar 

  • LaZerte, B. D. (1980). The dominating higher order vertical modes of the internal seiche in a small lake. Limnology and Oceanography, 25(5), 846–854.

    Article  Google Scholar 

  • Lemmin, U., Mortimer, C. H., & Bäuerle, E. (2005). Internal seiche dynamics in Lake Geneva. Limnology and Oceanography, 50(1), 207–216.

    Article  Google Scholar 

  • Liu, W. C., Yu, H. L., & Chung, C. E. (2011). Assessment of water quality in a subtropical alpine lake using multivariate statistical techniques and geostatistical mapping: a case study. International Journal of Environmental Research and Public Health, 8(4), 1126–1140.

    Article  Google Scholar 

  • MacIntyre, S., Romero, J. R., & Kling, G. W. (2002). Spatial–temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography, 47(3), 656–671.

    Article  Google Scholar 

  • Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218(3–4), 128–141.

    Article  Google Scholar 

  • Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water Resource Research, 34(10), 2685–2692.

    Article  Google Scholar 

  • Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10(2), 241–256.

    Article  Google Scholar 

  • Morrill, J. C., Roger, C. B., & Martha, H. C. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, ASCE, 131(1), 139–146.

    Article  CAS  Google Scholar 

  • Mortimer, C. H. (1993). Long internal waves in lakes: review of a century of research. Special Report, No. 42, University of Wisconsin–Milwaukee, Center for Great Lakes Studies, 117 pp.

  • Münnich, M. (1996). The influence of bottom topography on internal seiches in stratified media. Dynamics of Atmospheres and Oceans, 23(1–4), 257–266.

    Article  Google Scholar 

  • Muttil, N. S., & Chau, K. W. (2006). Neural network and genetic programming for modeling coastal algal blooms. International Journal of Environment and Pollution, 28(3–4), 223–238.

    Article  CAS  Google Scholar 

  • Patterson, J. C., Hamblin, P. F., & Imberger, J. (1984). Classification and dynamic simulation of the vertical density structure of lakes. Limnology and Oceanography, 29(4), 845–861.

    Article  Google Scholar 

  • Perez-Losada, J., Roget, E., & Casamitjana, X. (2003). Evidence of high vertical wave-number behaviour in a continuously stratified reservoir. Journal of Hydraulic Engineering, ASCE, 129(9), 734–737.

    Article  Google Scholar 

  • Pond, S., Phelps, G. T., Pasquin, J. E., McBean, G., & Stewart, R. W. (1971). Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean. Journal of the Atmospheric Sciences, 28(6), 901–917.

    Article  Google Scholar 

  • Porter, J., Arzberger, P., Braun, H., Bryant, P., Gage, S., Hansen, T., Hanson, P., Lin, C. C., Lin, F. P., Kratz, K., Michener, W., Shapiro, S., & Williams, T. (2005). Wireless sensor networks for ecology. Bioscience, 55(7), 561–572.

    Article  Google Scholar 

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–82.

    Article  Google Scholar 

  • Robarts, R. D., Waiser, M. J., Hadas, O., Zohary, T., & MacIntyre, S. (1998). Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basin of Lake Biwa, Japan. Limnology and Oceanography, 43(6), 1023–1036.

    Article  CAS  Google Scholar 

  • Roget, E., Salvade, G., & Zamboni, F. (1997). Internal seiche climatology in a small lake where transversal and second vertical modes are usually observed. Limnology and Oceanography, 42(4), 663–673.

    Article  Google Scholar 

  • Saggio, A., & Imberger, J. (1998). Internal wave weather in a stratified lake. Limnology and Oceanography, 43(8), 1780–1795.

    Google Scholar 

  • Schmidt, W. (1915). Uber den Energie-gehalt der Seen. Mit Beispielen von Lunzer Untersee nach Messungen mit einem einfachen Temperaturlot. Internationale Revue gesamten Hydrobiologie, Supplement 5, Leipzig.

  • Schmidt, W. (1928). Uber Temperatur und Stabilitats verhaltnisse von Seen. Geographiska Annaler, 10, 145–177.

    Article  Google Scholar 

  • Shade, A., Chiu, C. Y., & McMahon, K. D. (2010). Seasonal and episodic lake mixing stimulate differential planktonic bacterial dynamics. Microbial Ecology, 59(3), 546–554.

    Article  Google Scholar 

  • Stefan, J. (1879). Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. In: Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, Bd. 79, S.391–428.

  • Taormina, R., Chau, K. W., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676.

    Article  Google Scholar 

  • Tsai, J. W., Kratz, T. K., Hanson, P. C., Wu, J. T., Chang, W. Y. B., Arzberger, P. W., Lin, B. S., Lin, F. P., Chou, H. M., & Chiu, C. Y. (2008). Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshwater Biology, 53(10), 1920–941.

    Article  CAS  Google Scholar 

  • United Nations Educational, Scientific and Cultural Organization. (1981). Tenth report of the joint panel on oceanographic tables and standards. UNESCO Technical Paper in Marine Science.

  • Vajda, A., & Venäläinen, A. (2003). The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. International Journal of Climatology, 23(9), 1011–1022.

    Article  Google Scholar 

  • Vardavas, I. M., & Fountoulakis, A. (1996). Estimation of lake evaporation from standard meteorological measurements: application to four Australian lakes in different climatic regions. Ecological Modelling, 84(1–3), 139–150.

    Article  Google Scholar 

  • Vidal, J., Casamitjana, X., Colomer, J., & Serra, T. (2005). The internal wave field in Sau reservoir: Observation and modeling of a third vertical mode. Limnology and Oceanography, 50(4), 1326–1333.

    Article  Google Scholar 

  • Wedderburn, E. M. (1913). Temperature observations in Loch Earn with a further contribution to the hydrodynamical theory of temperature seiches. Transactions of the Royal Society of Edinburgh, 48(3), 629–695.

    Article  Google Scholar 

  • Wu, C. L., Chau, K. W., & Li, Y. S. (2009). Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research, 45(8), W0842.

    Article  Google Scholar 

  • Young, D. M. (1950). Iterative methods for solving partial difference equations of elliptical type. PhD thesis, Harvard University.

  • Yu, S. L., Hamrick, J. M., & Lee, D. S. (1983). Wind effects on air water oxygen transfer in a lake. Proceedings of International Symposium on Gas Transfer at Water Surfaces. Ithaca: Cornell University.

    Google Scholar 

  • Zhenlin, Y., Hanna, E., & Callaghan, T. V. (2011). Modelling surface-air-temperature variation over complex terrain around Abisko, Swedish Lapland: uncertainties of measurements and models at different scales. Geografiska Annaler: Series A, Physical Geography, 93(2), 89–112.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Taiwan National Science Council (NSC 97-2811-E-239-001) and Academia Sinica (AS-98-TP-B06). We thank field work assistants (Y. H. Hsueh and P. Y. You), an IT technician (H. M. Chou), a pre-reviewer (Dr. J. A. Hoopes), and the US National Science Foundation for their supplement to the North Temperate Lakes, Long-Term Ecological Research project, and the Gordon and Betty Moore Foundation for their support of the Global Laktsavee Ecological Observatory Network, of which YYL is a part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Liu.

Appendices

Appendices

Appendix 1. Estimate of inflow/runoff temperature

Inflow temperature was evaluated relate to the daily averaged air temperature using a nonlinear regression equation (Mohseni et al. 1998), given by

$$ {T}_{\mathrm{in}}={T}_{\mathrm{in}, \min }+\frac{T_{\mathrm{in}, \max }-{T}_{\mathrm{in}, \min }}{1+ \exp \left[{\gamma}_{\mathrm{a}}\left(T{}_{\mathrm{a},\mathrm{ip}}-{T}_{\mathrm{a}}\right)\right]} $$
(A1)

where T in,min and T in,max denote the minimum and maximum inflow temperatures, respectively, T a,ip is the air temperature at inflection point, γ a is the steepest slope of T in at inflection point. Nonlinear correlation plots between air temperature and inflow temperatures measured at the location A (see Fig. 1a) from 2007 to 2010 are shown in Fig. A1. The above equation was implemented to the non-typhoon case (Fig. A1a). The linear regression (T in = m ⋅ T a + b) was used for the typhoon case (Fig. A1b). The inflow/runoff temperatures from spring 2004 to summer 2006 were computed using the nonlinear correlation Eq. A1 and the linear regression with the coefficients (T in,min, T in,max, T a,ip, γ a, m, and b), which were determined by the data from 2007 to 2010.

Appendix 2. Runoff model and evapotranspiration

The Clark Unit Hydrograph method (Clark 1945) was used to estimate the inflow/runoff discharge from precipitation in the watershed. The key parameters, likely sensitive in the calibration tests, are the infiltration (normally determined on the basis of the soil type, land cover/land use, and antecedent-moisture conditions) and the time of concentration (typically given by the time for the first drop of precipitation at the hydraulically most distant point in the watershed to reach the watershed outlet). Both parameters were tuned by adjusting water elevation peaks, caused by rainstorms.

Forest evapotranspiration (E T, mm/day) was estimated using Priestley–Taylor equation (Priestley and Taylor 1972), capable of minimizing the number of parameters on the practical operation. The equation is given by

$$ {E}_{\mathrm{T}}={\alpha}_{\mathrm{E}}{\rho}_0\frac{s}{s+\gamma}\frac{H_{\mathrm{n}}-{H}_x}{L_{\mathrm{E}}} $$
(A2)

where γ = c pa p a/(ε E L E), psychrometric constant with the ratio of molecular weight of water to dry air, ε E (=0.622), α E is the Priestley–Taylor empirical constant (maximum = 1.26), s is slope of the saturated vapor pressure gradient, s = 0.04145 exp(0.06088T a) by the American Society of Association Executives (ASAE) Standards (1998), H n is net radiation, MJ/(m2 day), and H x is stored heat in soil, MJ/(m2 day), given by

$$ {H}_x={K}_{\mathrm{G}}{H}_{\mathrm{n}} \exp \left(-0.5\mathrm{LAI}\right) $$
(A3)

where K G is 0.4 for daytime (H n > 0), and 1.6 to 2.0 for night time (H n < 0), and LAI is the leaf area index, measured in the forest of the YYL catchment (Kao et al. 2000).

Appendix 3. Dominant wind direction

The dominant wind directions were plotted with the 10-min interval data (shown in Fig. A2) for the non-typhoon case (corresponding to Fig. 7a) and two typhoon cases: the weaker typhoon of 200413 (Fig. 7b) and the strong typhoon of 200505 (Fig. 7c).

Notation

The following symbols are used in this paper:

ΔT rms :

Root Mean Square deviation of water temperature

α E :

Priestly–Taylor empirical constant

α lwa :

Albedo of incoming longwave radiation

α sw :

Albedo of shortwave radiation

β :

Coefficient of thermal expansion

γ a :

Steepest slope at inflection point expansion

ε E :

Ratio of molecular weight of water to dry air

ε w :

Emissivity of the water body

λ :

Stefan–Boltzmann constant

τ :

Wind shear stress

ω :

Angular frequency

ψ and φ :

Stream function

ζ :

Vertical fluid displacement

ζ rms :

Internal seiche amplitude

ρ 0 :

Reference water density

ρ :

Water density

ρ a :

Air density

A 0 :

Surface area of the lake

C :

Cloud cover fraction

c c and c e :

Dimensionless coefficient

C D :

Drag coefficient

c p :

Specific heat capacity of water

c pa :

Specific heat capacity of air

E :

Evaporation

E T :

Evapotranspiration

e a :

Air vapor pressure

e s :

Vapor pressure at water surface

g :

Gravitational acceleration

H adv :

Heat advection

H c :

Sensible heat flux

H e :

Latent heat flux

H lw :

Net longwave radiation

H net :

Net heat flux on the water surface

H sw :

Shortwave radiation

H x :

Stored heat in soil

L E :

Heat of vaporization

L :

Cross section distance

LAI:

Leaf area index

N :

Buoyancy frequency

P :

Amount of precipitation

p :

Pressure in water column

p a :

Air pressure

Q in :

Inflow discharge

Q net :

Net water storage

Q out :

Outflow discharge

S t :

Schmidt stability

s :

Slope of the saturated vapor pressure gradient

T a :

Air temperature

T in :

Inflow water temperature

T out :

Outflow water temperature

T s :

Water surface temperature

t :

Time

u and w :

Velocities in horizontal and vertical directions

u * w :

Water friction velocity

w * :

Penetrative convection velocity

W 10m :

Wind speed on the 10 m height from the water surface

V :

Lake volume

x and y :

Horizontal and vertical directions

z g :

Center of the gravity

z m :

Maximum depth

z t :

Height of the thermocline

Fig. A1
figure 12

Nonlinear and linear correlations with daily average air temperatures and inflow temperatures (red lines) and 95 % confidence interval (blue dotted lines), a the non-typhoon case using the empirical Eq. A1 and b the typhoon case using the linear regression

Fig. A2
figure 13

Dominant wind directions during a the non-typhoon case (typical diurnal thermal cycle), b the weaker typhoon 200413 (distant to YYL), and c the strong typhoon 200505 (close to YYL). Bold numbers are the number of occurrences of wind direction with the 10° interval

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, N., Liu, WC., Chiu, CY. et al. Assessing the effects of severe rainstorm-induced mixing on a subtropical, subalpine lake. Environ Monit Assess 186, 3091–3114 (2014). https://doi.org/10.1007/s10661-013-3603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3603-7

Keywords

Navigation