Skip to main content
Log in

Trace element concentration and speciation in selected urban soils in New York City

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253 ± 143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %) > SS/CAR (22 %) > OX (20 %) > OM/S (10 %) > EX (7 %) > WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albasel, N., & Cottenie, A. (1985). Heavy metal contamination near major highways, industrial and urban areas in Belgian grassland. Water, Air, and Soil Pollution, 24, 103–109.

    CAS  Google Scholar 

  • Arrouays, D., Mench, M., Amans, V., & Gomez, A. (1996). Short-range variability of fallout Pb in a contaminated soil. Canadian Journal of Soil Science, 76(1), 73–81.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M. (1982). Environmental chemistry. Royal Society of Chemistry, 2.

  • Burt, R. (Ed.). (2004). Soil survey laboratory methods manual. Ver. No. 4.0. USDA-NRCS. Soil Survey Investigations Report No. 42. US Govt. Print. Office, Washington, DC. http://soils.usda.gov/technical/lmm/. Accessed 23 January 2012.

  • Burt, R., Wilson, M. A., Mays, M. D., Keck, J. T., Fillmore, M., Rodman, A. W., et al. (2000). Trace and major elemental analysis applications in the US soil survey program. Communications in Soil Science and Plant Analysis, 31(11–14), 1757–1771.

    Article  CAS  Google Scholar 

  • Burt, R., Mays, M. D., Benham, E. C., & Wilson, M. A. (2002). Phosphorus characterization and correlation with properties of selected benchmark soils of the U.S. Communications in Soils Science and Plant Analysis, 33(1–2), 117–141.

    Article  CAS  Google Scholar 

  • Burt, R., Wilson, M. A., Keck, J. T., Dougherty, B. D., Strom, D. E., & Lindahl, J. A. (2003a). Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Advances in Environmental Research, 8(1), 51–67.

    Article  CAS  Google Scholar 

  • Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003b). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32(6), 2109–2121.

    Article  CAS  Google Scholar 

  • Burt, R., Weber, T., Park, S., Yochum, S., & Ferguson, R. (2011). Trace element concentration and speciation in selected mining-contaminated soils and water in Willow Creek floodplain, Colorado. J. Applied and Environmental Science. Volume 2011, Article ID 237071, doi:10.115/2011/237071. http://www.hindawi.com/journals/aess/2011/237071/cta/. Accessed January 22, 2012.

  • Calmano, W., Hong, J., & Forstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28(8–9), 223–235.

    CAS  Google Scholar 

  • Cannon, W. F., & Horton, J. D. (2009). Soil geochemical signature of urbanization and industrialization—Chicago, Illinois, USA. Applied Geochemistry, 24, 1590–1601.

    Article  CAS  Google Scholar 

  • Caravanos, J., Weiss, A. L., Blaise, M. J., & Jaeger, R. J. (2006). A survey of spatially distributed exterior dust lead loadings in New York City. Environmental Research, 100, 165–172.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Mielke, H. W., & Sterrett, S. B. (1988). Speciation, mobility, and bioavailability of soil lead. In: B. E. Davies & B. G. Wixson, Science Reviews (pp. 105-109). Northwood, UK.

  • Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Science Society of America Proceedings, 36, 764–768.

    Article  Google Scholar 

  • Charlatchka, R., & Cambier, P. (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water, Air, and Soil Pollution, 118(1–2), 143–167.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28, 1173–1181.

    Article  CAS  Google Scholar 

  • Cheng, Z., Lee, L., Dayan, S., Grinshtein, M., & Shaw, R. (2011). Speciation of heavy metals in garden soils: evidences from and sequential chemical leaching. Journal of Soils and Sediments, 11, 628–638.

    Article  CAS  Google Scholar 

  • Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality, 25, 69–79.

    Article  CAS  Google Scholar 

  • Clift, D., Dickson, I. E., Roos, T., Collins, P., Jolly, M., & Klendworth, A. (1983). Accumulation of lead beside Mulgave, Freeway, Victoria. Search, 14, 155–157.

    CAS  Google Scholar 

  • Cohen, D. R., Rutherford, N. F., Morisseau, E., & Zissimos, A. M. (2012). Geochemical patterns in the soils of Cyprus. Science of the Total Environment, 420, 250–262.

    Article  CAS  Google Scholar 

  • Cramer, M. (1993). Urban renewal: restoring the vision of Olmsted and Vaux in Central Park's woodlands. Restoration and Management Notes, 11, 106.

    Google Scholar 

  • Craul, P. J. (1992). Urban soil in landscape design. New York: Wiley.

    Google Scholar 

  • Crepin, J., & Johnson, R. L. (1993). Soil sampling for environmental assessment. In R. Carter (Ed.), Soil sampling and methods of analysis (pp. 5–24). Boca Raton: Canadian Society of Soil Science, CRC Press.

    Google Scholar 

  • Dabkowska-Naskret, H., & Rozanski, S. Z. (2007). Mercury content in garden soils of urban agglomeration. Global NEST Journal, 9(3), 237–241.

    Google Scholar 

  • D'Amore, J. J., Al-Abed, S. R., Scheckel, S. K., & Ryan, J. A. (2005). Methods for speciation of metals in soils. A review. Journal of Environmental Quality, 34(5), 1707–1745.

    Article  Google Scholar 

  • De Vos, W., Tarvainen, T., et al. (2006). Geochemical Atlas of Europe. Part 2—interpretation of geochemical maps, additional tables, figures, maps, and related publications. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Debo, T. N., & Reese, A. J. (2003). Municipal stormwater management. CRC Press.

  • Deutsch, W. (1997). Groundwater chemistry: fundamentals and applications of contamination, (pp. 168–169, 174, 178). Lewis Publishers.

  • Diamond, J. M., Winchester, E. L., Mackler, D. J., Rasnake, W. J., Fanelli, J. K., & Gruber, D. (1992). Toxicity of cobalt to freshwater indicator species as a function of water hardness. Aquatic Toxicology, 22(3), 163–180.

    Article  CAS  Google Scholar 

  • Dong, A., Chesters, G., & Simsiman, G. V. (1984). Metal composition of soil, sediments, and urban dust and dirt samples from the Menomonee River Watershed, Wisconsin, USA. Water, Air, and Soil Pollution, 22(3), 257–275.

    CAS  Google Scholar 

  • Efland, W. R., & Pouyat, R. V. (1997). The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems, 1(4), 217–228.

    Article  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 14, 313–324.

    Article  Google Scholar 

  • Fang, S. B., Xu, C., Jia, X. B., Wang, B. Z., & An, S. Q. (2010). Using heavy metals to detect the human disturbances spatial scale on Chinese Yellow Sea coasts with an integrated analysis. Journal of Hazardous Materials, 184(1–3), 375–385.

    Article  CAS  Google Scholar 

  • Fanning, D. S., & Fanning, M. C. B. (1989). Soil morphology, genesis, and classification. New York: Wiley.

    Google Scholar 

  • Garrett, R. G., Hall, G. E. M., Vaive, J. E., & Pelchat, P. (2009). A water-leach procedure for estimating bioacessibility of elements in soils from transects across the United States and Canada. Applied Geochemistry, 24, 1438–1453.

    Article  CAS  Google Scholar 

  • Gilbert, F. L. (1982). Heavy metals in soils of Central Park. Syracuse: USDA-SCS State Office.

    Google Scholar 

  • Goldhaber, M. B., Morrison, J. M., Holloway, J. M., Wanty, R. B., Helsel, D. R., & Smith, D. B. (2009). A regional soil and sediment geochemical study in northern California. Applied Geochemistry, 24, 1482–1499.

    Article  CAS  Google Scholar 

  • Grzebisz, W., Ciesla, L., Komisarek, J., & Potarzycki, J. (2002). Geochemical assessment of heavy metals pollution of urban soils. Polish Journal of Environmental Studies, 11(5), 493–499.

    CAS  Google Scholar 

  • Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soils and sediment fractions. IUPAC Technical Report. Pure and Applied Chemistry, 76(2), 415–442.

    Article  CAS  Google Scholar 

  • Howard, J. L., & Olszewska, D. (2011). Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan. Environmental Pollution, 159(3), 754–761.

    Article  CAS  Google Scholar 

  • Hughes, M. K., Lepp, N. W., & Phipps, D. A. (1980). Aerial heavy metal pollution and terrestrial ecosystems. Advances in Ecological Research, 11, 217–327.

    CAS  Google Scholar 

  • Jackson, K. T. (1995). Encyclopedia of New York City. New Haven: Yale University Press.

    Google Scholar 

  • Johnson, C. E., Litaor, M. I., Billett, M. F., & Bricker, O. P. (1994). Chemical weathering in small catchments: climatic and anthropogenic influences. In B. Moldan & J. Cerny (Eds.), Biogeochemistry of small catchments: a tool for environmental research (pp. 323–341). New York: Wiley.

    Google Scholar 

  • Johnson, C. C., Breward, N., Ander, E., & Ault, L. (2005). G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland. Geochemistry: Exploration, Environment, Analysis, 5, 347–357.

    Google Scholar 

  • Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30, 485–492.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press. 150 pages.

    Google Scholar 

  • Karczewska, A. (1996). Metal species distribution in top- and subsoil in an area affected by copper smelter emissions. Applied Geochemistry, 11(1-2), 35–42.

    Google Scholar 

  • Khan, S., Nonden, D., & Khan, N. N. (1982). The mobility of some heavy metals through Indian red soil. Environmental Pollution. Series B. 119–125.

  • Keller, C., & Vedy, J. C. (1994). Distribution of copper and cadmium fractions in two forest soils. Journal of Environmental Quality, 23, 987–999.

    Article  CAS  Google Scholar 

  • Kinney, P. L., Aggarwal, M., Northridge, M. E., Janssen, N. A. H., & Shepard, P. (2000). Airborne concentrations of PM 2.5 and diesel exhaust particles on Harlem Sidewalks: a community-based pilot study. Environmental Health Perspectives, 108(3), 213–218.

    CAS  Google Scholar 

  • Kroenke, A. E., & Bopp, R. F. (2003). Final report. Assessment of historical and current trends in mercury deposition to New Jersey aquatic systems through analysis of sediment/soil cores. Rensselaer Polytechnic Institute and The State of New Jersey by and for the Department of Environmental Protection. http://www.state.nj.us/dep/dsr/air/Final%20Report-Mercury%20Aquatic.pdf. Accessed 22 January 2012.

  • Kuiters, A. T., & Mulder, A. (1993). Water-soluble organic matter in forest soils. Plant and Soil, 152, 225–235.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Brannvall, E., Taraskevicius, R., Aksamitauskas, C., & Zinkute, R. (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. Journal of Geochemical Exploration, 108(1), 15–20.

    Article  CAS  Google Scholar 

  • Laidlaw, M. A. S., & Filippelli, G. M. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Applied Geochemistry, 23, 2021–2039.

    Article  CAS  Google Scholar 

  • Lee, P. K., Touray, J. C., Baillif, P., & Ildefonse, J. P. (1997). Heavy metal contamination of settling particles in a retention pool long the A-71 motorway in Sologne, France. Science of the Total Environment, 201(1), 1–15.

    Article  CAS  Google Scholar 

  • Li, X. D., Poon, C. S., & Pui, S. L. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16(11–12), 1361–1368.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Tan, F., & Harris, W. G. (1997). Concentrations and distributions of eleven metals in Florida soils. Journal of Environmental Quality, 26, 769–775.

    Article  CAS  Google Scholar 

  • Ma, Y. B., & Uren, N. C. (1998). Transformations of heavy metals added to soils-application of a new sequential extraction procedure. Geoderma, 84, 157–168.

    Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the City of Palermo (Sicily), Italy. Science of the Total Environment, 300(1), 229–243.

    CAS  Google Scholar 

  • Markus, J. A., & McBratney, A. B. (1996). An urban soil study: heavy metals in Glebe, Australia. Australian Journal of Soil Research, 34, 453–465.

    Article  CAS  Google Scholar 

  • McDonnel, M. J., & Pickett, S. T. A. (1990). The study of ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology, 71(4), 1232–1237.

    Article  Google Scholar 

  • McGowen, S. L., & Basta, N. T. (2001). Heavy metal solubility and transport in soils contaminated by mining and smelting. In H. Magdi Selim & D. L. Sparks (Eds.), Heavy metal release in soils, Chapter 4 (pp. 89–107). Boca Raton: CRC Press.

    Google Scholar 

  • Mielke, H. W. (1994). Lead in New Orleans soils: new images of an urban environment. Environmental Geochemistry and Health, 16(3–4), 123–128.

    Article  CAS  Google Scholar 

  • Moor, C., Lymberopoulou, T., & Dietrich, V. J. (2001). Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Mikrochimica Acta, 136, 123–128.

    Article  CAS  Google Scholar 

  • Narwal, R. P., Singh, B. R., & Salbu, B. (1999). Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential fractionations. Communications in Soil Science and Plant Analysis, 30, 1209–1230.

    Article  CAS  Google Scholar 

  • New Englands Interstate Water Pollution Control Committee (NEIWPCC). (2008). Northeast states filing of Clean Water Act 319 Petition, Factsheet October 2008. http://www.neiwpcc.org/mercury/mercury-docs/319(g)factsheet.pdf. Accessed 26 January 2012.

  • Nriagu, J. O. (1984). Formation and stability of base metal phosphates in soils and sediments. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate minerals (pp. 318–329). New York: Springer.

    Chapter  Google Scholar 

  • Nwankwoaloa, A. U., Varughese, P., Ikem, A., & Egiebor, N. O. (2001). Trace heavy metals in sediments of the Saw Mill River in Westchester County, New York. Symposia papers presented before the Division of Environmental Chemistry, American Chemical Society, San Diego, California, April 1–5, 2001.

  • Overcash, M. H., & Pal, D. (1979). Design of land treatment systems for industrial wastes—theory and practice. Ann Arbor: Ann Arbor Sci Publ.

    Google Scholar 

  • Page, A. L., & Bingham, F. T. (1973). Residue reviews, 48, 1–43.

    Article  CAS  Google Scholar 

  • Pardue, J. H., Delaune, R. D., & Patrick, W. H., Jr. (1992). Metal to aluminum correlation in Louisana coastal wetlands: identification of elevated metal concentrations. Journal of Environmental Quality, 21, 539–545.

    Article  CAS  Google Scholar 

  • Pilgrim, W., & Schroeder, B. (1997). Multi-media concentrations of heavy metals and major ions from urban and rural sites in New Brunswick, Canada. Environmental Monitoring and Assessment, 47(1), 89–108.

    Article  CAS  Google Scholar 

  • Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., & Klinck, B. A. (2004). Arsenic and selenium. In: H. D. Holland & K. K. Turekian (eds.), Treatise on geochemistry. Elsevier, Amsterdam. Environmental Geochemistry 9:17–66

  • Ponnamperuma, F. N. (1972). The chemistry of submerged soils. In N. C. Brady (Ed.), Advances in agronomy (Vol. 24, pp. 29–96). Madison: Soil Science Society of America.

    Google Scholar 

  • Pouyat, R. V. (1991). The urban-rural gradient: An opportunity to better understand human influences on forest soils. In: Proceedings of the Society of American Foresters. 1990 Annual Convention, Washington D.C. (pp. 212–218). July 27–Aug. 1, 1990. Society of American Foresters, Washington D.C.

  • Pouyat, R. V., & McDonnell, M. J. (1991). Heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water, Air, and Soil Pollution, 57–58(1), 797–807.

    Article  Google Scholar 

  • Pouyat, R. V., Russell-Anelli, J., Yesilonis, I. D., & Groffman, P. M. (2003). Soil carbon in urban forest ecosystems. In J. M. Kimble, L. S. Heath, R. A. Birdsey, & R. Lal (Eds.), The potential of US forest soils to sequester carbon and mitigate the greenhouse effect (pp. 347–362). Boca Raton: CRC Press.

    Google Scholar 

  • Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium, and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23, 125–140.

    Article  Google Scholar 

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267(1–3), 125–140.

    CAS  Google Scholar 

  • Rauret, G., Rubio, R., Lopez-Sanchez, J. F., & Casassas, E. (1988). Determination and speciation for metal solid speciation in heavily polluted river sediments. International Journal of Environmental Analytical Chemistry, 35, 89–100.

    Google Scholar 

  • Reichman, S. M. (2002). The response of plants to metal toxicity: a review focusing on copper, manganese, and zinc. Australian Mineral and Energy Environment Foundation, Occasional Paper No. 14.

  • Reimann, C. & Caritat P. de. (1998). Chemical Elements in the Environment—Factsheets for the Geochemist and Environmental Scientist. ISBN 3-540-63670-6. Springer–Ver

  • Renella, G., Adamo, P., Bianco, M. R., Landi, L., Violante, P., & Nannipieri, P. (2004). Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science, 55(1), 123–133.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Pereira, M. E., Durate, A. C., Ajome-Marsan, F., Davidson, C. M., Greman, H., et al. (2006). Mercury in urban soils: a comparison of local spatial variability in six European cities. Science of the Total Environment, 368(2–3), 926–936.

    CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). FOREGS Geochemical Atlas of Europe. Part 1: background information methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Scheyer, J. M., & Hipple, K. W. (2005). Urban Soil Primer. United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS), National Soil Survey Center, Lincoln, NE.

  • Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Soil Survey Staff. (2012). Field book for describing and sampling soils, Version 2.0. USDA-NRCS, National Soil Survey Center, Lincoln, NE.

  • Shacklette, H. T., & Boerngen, J. G. (1984). Element concentrations in soils and other surficial materials of the coterminous United States. US Geological Survey Professional Paper 1270. Washington DC: US Govt. Print. Office.

    Google Scholar 

  • Shaw, R. K., Wilson, M. A., Reinhardt, L., & Isleib, J. (2010). Geochemistry of artifactual coarse fragment types from selected New York City soils. World Congress of Soil Science, Soil Solutions for a Changing World. 1-6 August 2010, Brisbane, Australia. pp. 25-27.

  • Shuman, L. M. (1985). Fractionation method for soil microelements. Soil Science, 140, 11–22.

    Article  CAS  Google Scholar 

  • Singh, B. R. (1997). Soil pollution and contamination. In R. Lal, W. H. Blum, C. C. Valentin, & B. A. Stewart (Eds.), Advances in soil science: methods for assessment of soil degradation (pp. 279–299). Boca Raton: CRC Press.

    Google Scholar 

  • Sirkin, L. (1996). Western Long Island geology: History, processes, and trips. Book and Tackle Shop, Watch Hill

  • Sisterson, D. L., & Shannon, J. D. (1990). A comparison of urban and suburban precipitation chemistry. Atmospheric Environment, 24(3), 389–394.

    Google Scholar 

  • Smith, D. B. (2009). Geochemical studies of North American soils: results from the pilot study phase of North American Soil Geochemical Landscapes Project. Applied Geochemistry, 24, 1355–1356.

    Article  CAS  Google Scholar 

  • Smith, D. B., & Reimann, C. (2008). Low-density geochemical mapping and the robustness of geochemical patterns. Geochemistry: Exploration, Environment, Analysis, 8, 219–227.

    CAS  Google Scholar 

  • Soil Survey Division Staff. (1993). Soil survey manual. USDA-NRCS, US Government Printing Office.

  • Soil Survey Staff. (2010). Keys to Soil Taxonomy. 11th ed. USD-NRCS. US Govt. Print. Office, Washington, D.C. ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/2010_Keys_to_Soil_Taxonomy.pdf. Accessed 3 February 2012.

  • Strojan, C. L. (1978). Forest leaf litter decomposition in the vicinity of a zinc smelter. Oecology of Berlin, 32, 202–212.

    Google Scholar 

  • Suave, S., & Parker, D. R. (2005). Chemical speciation of trace elements in soil solution. In M.A. Tabatabai and D.L. Sparks (Eds.), Chemical Processes in Soils (pp. 655–688). Soil Science Society of America Book Series No. 8, Madison, Wisconsin.

  • Taylor, J. K. (1988). Quality assurance of chemical measurements. Chelsea: Lewis Publishing.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tiller, K. G. (1989). Heavy metals in soils and their environmental significance. In B. A. Stewart (Ed.), Advances in soil science, no. 9 (pp. 113–142). New York: Springer.

    Chapter  Google Scholar 

  • Tiller, K. G. (1992). Urban soil contamination in Australia. Australian Journal of Soil Research, 30, 937–957.

    Article  CAS  Google Scholar 

  • Tiller, K. G., Smith, L. H., Merry, R. H., & Clayton, P. M. (1987). The dispersal of automotive lead from metropolitan Adelaide into adjacent rural areas. Australian Journal of Soil Research, 25, 155–166.

    Article  CAS  Google Scholar 

  • Tyler, G. (1972). Heavy metals pollute nature; may reduce productivity. Ambio, 1, 52–59.

    CAS  Google Scholar 

  • United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS). (1997). New York. Guidelines for urban erosion and sediment control. http://www.saratogastormwater.org/Municipal-govt-ED/on%20line%20resc/Construction/section_1.pdf. Accessed 20 January 2012.

  • United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS) in conjunction with New York City Soil and Water Conservation District and Cornell University Agricultural Experiment Station. (2006). New York City Reconnaissance Soil Survey. 2006. http://clic.cses.vt.edu/soils/AS2%202.0%20archive%20files%20-%20open%20folder%20select%20all%20copy%20to%20a%20root%20directory/AS2_Urban_Soil_Surveys/New_York_City_USA/NYC_RSS_ManuscriptB2.pdf. Accessed 9 January 2012.

  • United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS) in conjunction with New York City Soil and Water Conservation District and Cornell University Agricultural Experiment Station. (2007). Soil Survey of Bronx River Watershed, Bronx, New York. US Govt. Print. Office, Washington, DC. http://www.nycswcd.net/files/BRW_manuscript_PRINT_DOUBLESIDED1.pdf. Accessed 30 January 2012.

  • Walsh, D. C. (1996). Geochemistry of soil-waste landfills xix. Ph.D. dissertation. Rensselaer Polytechnic Institute.

  • Walter, C., McBratney, A. B., Viscarra Rossel, R. A., & Markus, J. A. (2005). Spatial point-process statistics: concepts and application to the analysis of lead contamination in urban soil. Environmetrics, 16, 339–355.

    Article  CAS  Google Scholar 

  • Weber, J., Olson, G. W., & Lopez, S. H. (1984). Tour of soils of Central Park in New York City. Cooperative Extension of Bulletin, 132.

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

    Article  CAS  Google Scholar 

  • Wilcke, W., Muller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: heavy metal and aluminum partitioning in topsoils. Geoderma, 86(3), 211–228.

    Article  CAS  Google Scholar 

  • Wilson, M. A., Burt, R., and Mays, M. D. (2001). Application of trace elements in the US Cooperative Soil Survey Program. In Proceedings of the 6th International Conference of the Biogeochemistry of Trace Elements (ICOBTE '01), (p. 324), Ontario, Canada, 2001.

  • Wilson, M. A., Burt, R., & Lee, C. W. (2006). Improved elemental recoveries in soils with heated boric acid following microwave total digestion. Communications in Soil Science and Plant Analysis, 37(3), 513–524.

    Article  CAS  Google Scholar 

  • Wilson, M. A., Burt, R., Indorante, S. J., Jenkins, A. B., Chiaretti, J. V., Ulmer, M. G., et al. (2008). Geochemistry in the modern soil survey program. Environmental Monitoring and Assessment, 139, 151–171.

    Article  CAS  Google Scholar 

  • Xian, X. (1989). Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 113, 257–264.

    Article  CAS  Google Scholar 

  • Young, T. M., Heeraman, D. A., Sirin, G., & Ashbaugh, L. L. (2003). Resuspension of soil as source of airborne lead near industrial facilities and highways. Environmental Science and Technology, 36, 2484–2490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Burt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burt, R., Hernandez, L., Shaw, R. et al. Trace element concentration and speciation in selected urban soils in New York City. Environ Monit Assess 186, 195–215 (2014). https://doi.org/10.1007/s10661-013-3366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3366-1

Keywords

Navigation