Skip to main content

Advertisement

Log in

Selection of a halophytic plant for assessing the phytotoxicity of dredged seaport sediment stored on land

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The filling of dry quarries in coastal areas with sediments dredged in seaports represents a potentially interesting method of recycling of these materials. However, this recycling requires the prior carrying out of an Environmental Risk Assessment of the scenario concerned. For this, the question arose as to the type of plants capable of developing on the surface of such a deposit and the method to implement for assessing the possible phytotoxicity of dredged sediments. To answer this question, we chose to work with halophytic plants to be free from the salt-related effect and to assess only the effect related to the toxic compounds present. Based on the objectives set, these works led to the use of common plants of the French coast, with direct seeding, and with pollution-sensitive plants. Three species of angiosperms, Armeria maritima, Anthemis maritima and Plantago coronopus, were finally tested. As a result of this work, Armeria maritima was retained as the most suitable plant for testing the possible phytotoxic effect of dredged marine sediments stored on land. The results obtained with this plant are as follows: germination of 40 % of the seeds in 31 days, produced biomass of 493 mg FW in 6 months and a capacity to bioaccumulate metal pollutants in roots with 350 and 720 mg/kg DW for Zn and Cu, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Glycophytes are not plants naturally encountered on salty substrates although they can tolerate a certain quantity of salt.

  2. A halophyte is a plant adapted to salty media or, by extension, to media with high osmotic pressure.

References

  • Alzieu, C., & Quiniou, F. (2001). GéoriskLa démarche danalyse des risques liés à limmersion des boues de dragage de ports maritimes (CD-ROM).

  • Anic, V., Hinojosa, L. F., Diaz-Forester, J., et al. (2010). Influence of soil chemical variables and altitude on the distribution of high-alpine plants: the case of the Andes of central Chile. Artic, Antartic, and Alpine Research, 42(2), 152–163.

    Article  Google Scholar 

  • Baskin, C. C., & Baskin, J. M. (1998). Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic.

    Google Scholar 

  • Becker, T., & Brändel, M. (2007). Vegetation-environment relationships in heavy metal-dry grassland complex. Folia Geobotanica, 42, 11–28.

    Article  Google Scholar 

  • Bedell, J.-P., Briant, A., Delolme, C., & Perrodin, Y. (2003). Evaluation of the phytotoxicity of contaminated sediments deposited on soil. I. Impact of water draining from the deposit on the germination of neighbouring plants. Chemosphere, 50, 393–402.

    Article  Google Scholar 

  • Bedell, J.-P., Bazin, C., Sarrazin, B., & Perrodin, Y. (2013). Assessment of the phytotoxicity of seaport sediments in the framework of a quarry deposit scenario: germination tests on sediments aged artificially by column leaching. Archives of Environmental Contamination and Toxicology, 65(1), 1–13.

    Article  CAS  Google Scholar 

  • El-Din Fahmy, A. G. (1997). Evaluation of the weed flora of Egypt from Predynastic to Graeco–Roman times. Vegetation history and Archaeobotany, 6, 241–247.

    Article  Google Scholar 

  • Farago, M. E., Mullen, W. A., Cole, M. M., & Smith, R. F. (1980). A study of Armeria maritima (Mill) willdenow growing in a copper-impregnated bog. Environmental Pollution, 21, 225–244.

    Article  CAS  Google Scholar 

  • Gourmelon, M., Le Saux, J. C., Basoullet, P., et al. (2003). Suivi des apports en contaminants des dépôts à terre. In C. Alzieu (Ed.), Bioévaluation de la qualité environnementale des sédiments portuaires et des zones d’immersion (pp. 215–242). Brest: IFREMER.

    Google Scholar 

  • Gulzar, S., & Khan, M. A. (2002). Alleviation of salinity-induced dormancy in perennial grasses. Biologia Plantarum, 45, 617–619.

    Article  CAS  Google Scholar 

  • Hanslin, H. M., & Eggen, T. (2005). Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Science Research, 15, 43–50.

    Article  Google Scholar 

  • Heumann, H. G. (2002). Ultrastructural localization of zinc in zinc-tolerant Armeria maritima spp. halleri by autometallography. Journal of Plant Physiology, 159, 191–203.

    Article  CAS  Google Scholar 

  • Khan, M. A., & Ungar, I. A. (2001). Effects of germination promoting compounds on the release of primary and salt-enforced seed dormancy in the halophyte Sporobolus arabicus Boiss. Seed Science Technology, 29, 299–306.

    Google Scholar 

  • Khan, M. A., Gul, B., & Weber, D. J. (2002). Improving seed germination of Salicorania rubra (Chenopodiaceae) under saline conditions using germination-regulating chemicals. Western North American Naturalist, 62, 101–105.

    Google Scholar 

  • Khan, M. A., Gul, B., & Weber, D. J. (2004). Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Canadian Journal of Botany, 82, 37–42.

    Article  CAS  Google Scholar 

  • Köhl, K. I. (1997). Do Armeria maritima (Mill.) Willd. ecotypes from metalliferous soils and non-metalliferous soils differ in growth response under Zn-stress? A comparison by a new artificial soil method. Journal of Experimental Botany, 48, 1959–1967.

    Google Scholar 

  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29–37.

    Article  CAS  Google Scholar 

  • Loughman, B. C., Roberts, S. C., & Goodwin-Bailey, C. I. (1983). Varietal differences in physiological and biochemical responses to changes in the ionic environment. Plant and Soil, 72, 245–259.

    Article  CAS  Google Scholar 

  • Luyssaert, S., Mertens, J., Vervaeke, P., De Vos, B., & Lust, N. (2001). Preliminary results of afforestation of brakish sludge mounds. Ecological Engineering, 16, 567–572.

    Article  Google Scholar 

  • Malcolm, C. V., Lindley, V. A., O’Leary, J. W., Runciman, H. V., & Barrett-Lehnnard, E. G. (2003). Halophyte and glycophyte salt tolerance at germination and the establishment of halophyte shrubs in saline environments. Plant and Soil, 253, 171–185.

    Article  CAS  Google Scholar 

  • Malcolm, C. V. (1986). Production from salt affected soils. Reclamation and Revegetation Research, 5, 343–361.

    Google Scholar 

  • Marinova, E., & Atanassova, J. (2006). Anthropogenic impact on vegetation and environment during the Bronze Age in the area of Lake Durankulak, NE Bulgaria: Pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Review of Palaeobotany and Palynology, 141(1-2), 165–178. August 2006.

    Article  Google Scholar 

  • Mayer, A. M., & Poljakoff-Mayber, A. (1963). The germination of seeds. Oxford: Pergamon.

    Google Scholar 

  • Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: limitation and possibilities for phytoextraction and phytovolatilisation. Science of the Total Environment, 326, 209–215.

    Article  CAS  Google Scholar 

  • Neumann, D., zur Nieden, U., Litchenberger, O., & Leopold, I. (1995). How does Armeria maritima tolerate high heavy metal concentrations? Journal of Plant Physiology, 149, 704–717.

    Article  Google Scholar 

  • OECD (2010), Test No. 317: Bioaccumulation in Terrestrial Oligochaetes, OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing. doi: 10.1787/9789264090934-en

  • Olko, A., Abratowska, A., Zylkowska, J., Wierzbicka, M., & Tukiendorf, A. (2008). Armeria maritima from a calamine heap—initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotoxicology and Environmental Safety, 69, 209–218.

    Article  CAS  Google Scholar 

  • Osmond, C. D., Bjorkman, O., & Andreson, D. J. (1980). Physiological processes in plant ecology: towards a synthesis with Atriplex (Vol. 36). Berlin, Heildeberg, New York: Springer.

    Book  Google Scholar 

  • Pensaert, S., De Becker, G., De Clercq, B., De Puydt, S., Van de Velde, K., Trapp, S., & Novak, J. (2005). Development of an integrated approach for the removal of tributyltin (TBT) from waterways and harbors: Prevention, treatments and reuse of TBT contaminated sediments. Task 3550: treatment of sediment; Life 02 ENV/B/000341, 155 pp.

  • Perrodin, Y., Babut, M., Bedell, J.-P., Bray, M., Clement, B., & Delolme, C. (2006). Assessment of ecotoxicological risks related to depositing dredged materials from canals in northern France on soil. Environment International, 32, 804–814.

    Article  Google Scholar 

  • Piesschaert, F., Mertens, J., Huybrechts, W., & Rache, P. D. (2005). Early vegetation succession and management options on a brackish sediment dike. Ecological Engineering, 25, 349–364.

    Article  Google Scholar 

  • Redondo-Gomez, S., Mateos-Naranjo, E., & Andrades-Moreno, L. (2010). Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials, 184, 299–307.

    Article  CAS  Google Scholar 

  • Rodwell, J. S., & Pigott, C.D. (2000). British Plant Communities: Maritime communities and vegetation of open habitats. Cambridge University Press, 528 pp.

  • Schwartz, C., Gérard, E., Perronnet, K., & Morel, J.-L. (2001). Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Science of the Total Environment, 279, 215–221.

    Article  CAS  Google Scholar 

  • Shumway, S. W., & Bertness, M. D. (1992). Salt stress limitation of seedling recruitment in a salt-marsh plant community. Oecologia, 92, 490–497.

    Article  Google Scholar 

  • Stehouver, R. C., & Macneal, K. (2003). Use of yard trimming compost for restoration of saline soil incineration ash. Compost Science and Utilization, 11, 51–60.

    Article  Google Scholar 

  • Ungar, I. A. (1978). Halophyte seed germination. The Botanical Review, 44, 233–264.

    Article  CAS  Google Scholar 

  • Ungar, I. A. (1987). Population ecology of halophyte seeds. The Botanical Review, 53, 301–334.

    Article  Google Scholar 

  • Zhao, F., McGrath, S. P., & Crossland, A. R. (1994). Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Communication of Soil Science and Plant Analysis, 25, 407–418.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the French National Agency for Research for its financial support to the programme “SEDIGEST” (ANR-07-ECOT012-01), as well as Mohammed Abdelghafour, Karim Lounis and Carole Gaignaire (INSAVALOR-POLDEN), Marc Danjean (LEHNA-IPE) and Robert Moretto (EEDEMS) for their technical and logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Bedell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedell, JP., Ferro, Y., Bazin, C. et al. Selection of a halophytic plant for assessing the phytotoxicity of dredged seaport sediment stored on land. Environ Monit Assess 186, 183–194 (2014). https://doi.org/10.1007/s10661-013-3365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3365-2

Keywords

Navigation