Skip to main content

Advertisement

Log in

Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored marshes dominated by Spartina maritima to provide support for restoration and management strategies that may offset negative aspects of eutrophication and climate change in estuarine ecosystems. Sediment C content was between ca. 13 mg C g−1and sediment N content was ca. 1.8 mg N g−1. The highest C content for S. maritima was recorded in leaves and stems (ca. 420 mg C g−1) and the lowest in roots (361 ± 4 mg C g−1). S. maritima also concentrated more N in its leaves (31 ± 1 mg N g−1) than in other organs. C stock in the restored marshes was 29.6 t C ha−1; ca. 16 % was stored in S. maritima tissues. N stock was 3.6 t N ha−1, with 8.3 % stored in S. maritima. Our results showed that the S. maritima restored marshes, 2.5 years after planting, were sequestering atmospheric C and, therefore, provide some mitigation for global warming. Stands are also capturing nitrogen and reducing eutrophication. The concentrations of C and N contents in sediments, and cordgrass relative cover of 62 %, and low below-ground biomass (BGB) suggest restored marshes can sequester more C and N. S. maritima plantations in low marshes replace bare sediments and invasive populations of exotic Spartina densiflora and increase the C and N sequestration capacity of the marsh by increasing biomass production and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam, P. (1990). Salt marsh ecology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Bertness, M. D., Crain, C., Holdredge, C., & Sala, N. (2007). Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology, 22, 131–139.

    Article  Google Scholar 

  • Bouchard, V., & Lefeuvre, J. C. (2000). Primary production and macro-detritus dynamics in a European salt marsh: Carbon and nitrogen budgets. Aquatic Botany, 67, 23–42.

    Article  CAS  Google Scholar 

  • Boyer, K. E., Callaway, J. C., & Zedler, J. B. (2000). Evaluating the progress of restored cordgrass (Spartina foliosa) marshes: Belowground biomass and tissue nitrogen. Estuaries, 23, 711–721.

    Article  CAS  Google Scholar 

  • Brigham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. P., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26, 889–916.

    Article  Google Scholar 

  • Caçador, I., Costa, A. I., & Vale, C. (2004). Carbon storage in Tagus salt marsh sediments. Water, Air, and Soil Pollution, 4, 701–714.

    Article  Google Scholar 

  • Caçador, I., Costa, A. I., & Vale, C. (2007). Nitrogen sequestration capacity of two salt marshes from the Tagus estuary. Hydrobiologia, 587, 137–145.

    Article  Google Scholar 

  • Caçador, I., Caetano, M., Duarte, B., & Vale, C. (2009). Stock and losses of trace metals from salt marsh plants. Marine Environmental Research, 67, 75–82.

    Article  Google Scholar 

  • Caetano, M., Bernárdez, P., Santos-Echeandia, J., Prego, R., & Vale, C. (2012). Tidally driven N, P, Fe and Mn exchanges in salt marsh sediments of Tagus estuary (SW Europe). Environmental Monitoring and Assessment, 184, 6541–6552.

    Article  CAS  Google Scholar 

  • Caffrey, J. M., Murrell, M. C., Wigand, C., & McKinney, R. (2007). Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biogeochemistry, 82, 251–264.

    Article  CAS  Google Scholar 

  • Cartaxana, P., & Catarino, E. (1997). Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. Journal of Coastal Conservation, 3, 27–34.

    Article  Google Scholar 

  • Castellanos, E.M. (1992). Colonización, dinámica poblacional y papel en la sucesión de Spartina maritima (Curtis) Fernald en las Marismas del Odiel. Ph.D. Thesis, Universidad de Sevilla.

  • Castellanos, E. M., Heredia, C., Figueroa, M. E., & Davy, A. J. (1998). Tiller dynamics of Spartina maritima in successional and non-successional Mediterranean salt marsh. Plant Ecology, 137, 213–225.

    Article  Google Scholar 

  • Castillo, J. M., & Figueroa, E. (2009a). Restoring salt marshes using small cordgrass, Spartina maritima. Restoration Ecology, 17, 324–326.

    Article  Google Scholar 

  • Castillo, J. M., & Figueroa, E. (2009b). Effects of abiotic factors on the life span of the invasive cordgrass Spartina densiflora and the native Spartina maritima at low marshes. Aquatic Ecology, 43, 51–60.

    Article  Google Scholar 

  • Castillo, J. M., Fernández-Baco, L., Castellanos, E. M., Luque, C. J., Figueroa, M. E., & Davy, A. J. (2000). Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. Journal of Ecology, 88, 801–812.

    Article  Google Scholar 

  • Castillo, J. M., Leira-Doce, P., Rubio-Casal, A. E., & Figueroa, M. E. (2008). Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuarine, Coastal and Shelf Science, 78, 819–826.

    Article  Google Scholar 

  • Castillo, J. M., Mateos-Naranjo, E., Nieva, F. J., & Figueroa, M. E. (2008). Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia, 614, 363–371.

    Article  Google Scholar 

  • Castillo, J. M., Ayres, D. R., Leira-Doce, P., Bailey, J., Blum, M., Strong, D. R., et al. (2010). The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Diversity and Distributions, 16, 547–558.

    Article  Google Scholar 

  • Castillo, J. M., Rubio-Casal, A. E., & Figueroa, E. (2010). Cordgrass biomass in coastal marshes. In M. Momba & F. Bux (Eds.), Biomass (pp 1–26). Rijeka: Sciyo.

    Google Scholar 

  • Castro, P., Valiela, I., & Freitas, H. (2009). Sediment pool and plant content as indicators of nitrogen regimes in Portuguese estuaries. Journal of Experimental Marine Biology and Ecology, 380, 1–10.

    Article  CAS  Google Scholar 

  • Chmura, G.L., Anisfeld, S.C., Cahoon, D.R. & Lynch, J.C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, article 11.

    Google Scholar 

  • Choi, Y., & Wang, Y. (2004). Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles, 18, GB4016.

    Article  Google Scholar 

  • Cornell, J. A., Craft, C. B., & Megonigal, J. P. (2007). Ecosystem gas exchange across a created salt marsh chronosequence. Wetlands, 27, 240–250.

    Article  Google Scholar 

  • Craft, C. B., Broome, S. W., & Senica, E. D. (1988). Nitrogen, phosphorus, and organic carbon pools in natural and transplanted marsh soils. Estuaries, 11, 272–280.

    Article  CAS  Google Scholar 

  • Crooks, S., Herr, D., Tamelander, J., Laffoley, D., & Vandever, J. (2011). Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: Challenges and opportunities (Environment Department Paper 121 (69 pp.)). Washington, DC: World Bank.

    Google Scholar 

  • Curado, G., Figueroa, M. E., & Castillo, J. M. (2012). Sediment dynamics in Spartina maritima restored, non-restored and preserved salt marshes. Ecological Engineering, 47, 30–35.

    Article  Google Scholar 

  • Darby, F. A., & Turner, R. E. (2008). Below- and aboveground biomass of Spartina alterniflora: Response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts, 31, 326–334.

    Article  CAS  Google Scholar 

  • Davy, A. J., Bakker, P., & Figueroa, M. E. (2009). Human modification of European salt marshes. In B. R. Silliman, E. D. Grosholz, & M. D. Bertness (Eds.), Human impacts on salt marshes: A global perspective (pp. 311–335). Berkeley: University of California Press.

    Google Scholar 

  • deJonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 475, 1–19.

    Article  Google Scholar 

  • Dollhopf, S. L., Hyun, J. H., Smith, A. C., Adams, H. J., O'Brien, S., & Kostka, J. E. (2005). Quantification of ammonia-oxidizing bacteria and controls of nitrification in saltmarsh sediments. Applied and Environmental Microbiology, 71, 240–246.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F., & Dupuy, C. (1999). Behaviour of rare earth elements at the freshwater-seawater interface of two acid mine rivers: The Tinto and Odiel (Andalucia, Spain). Applied Geochemistry, 14, 1063–1072.

    Article  CAS  Google Scholar 

  • Elsey-Quirk, T., Seliskar, D. M., Sommerfield, C. K., & Gallagher, J. L. (2011). Salt marsh carbon pool distribution in a mid-Atlantic Lagoon, USA: Sea level rise implications. Wetlands, 31, 87–99.

    Article  Google Scholar 

  • Figueroa, M. E., Castillo, J. M., Redondo, S., Luque, T., Castellanos, E. M., Nieva, F. J., et al. (2003). Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. Journal of Ecology, 91, 616–626.

    Article  Google Scholar 

  • Ford, M. A., Cahoon, D. R., & Lynch, J. C. (1999). Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering, 12, 189–205.

    Article  Google Scholar 

  • Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., & Fallon, D. (2002). Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands, 22, 71–89.

    Article  Google Scholar 

  • Hemminga, M. A., van Soelen, J., & Maas, Y. E. M. (1998). Biomass production in pioneer Spartina anglica patches: Evidence for the importance of seston particle deposition. Estuarine, Coastal and Shelf Science, 47, 797–805.

    Article  CAS  Google Scholar 

  • Hou, L., Liu, M., Yang, Y., Ou, D., Lin, X., & Chen, H. (2010). Biogenic silica in intertidal marsh plants and associated sediments of the Yangtze Estuary. Journal of Environmental Sciences, 22, 374–380.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team. Switzerland: Geneva.

    Google Scholar 

  • Liao, C., Luo, Y., Jiang, L., Zhou, X., Wu, X., Fang, C., et al. (2007). Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10, 1351–1361.

    Article  CAS  Google Scholar 

  • Lillebo, A. I., Flindt, M. R., Pardal, M. A., & Marques, J. C. (2006). The effect of Zostera noltii, Spartina maritima and Scirpus maritimus on sediment pore-water profiles in a temperate intertidal estuary. Hydrobiologia, 555, 175–183.

    Article  CAS  Google Scholar 

  • McFarlin, C. R., Brewer, J. S., Buck, T. L., & Pennings, S. C. (2008). Impact of fertilization on a salt marsh food web in Georgia. Estuaries and Coasts, 31, 313–325.

    Article  Google Scholar 

  • Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., & Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83, 2869–2877.

    Article  Google Scholar 

  • Neves, J. P., Simoes, M. P., Ferreira, L. F., Madeira, M., & Gazarini, L. C. (2010). Comparison of biomass and nutrient dynamics between an invasive and a native species in a Mediterranean saltmarsh. Wetlands, 30, 817–826.

    Article  Google Scholar 

  • Nicholls, R. J. (2004). Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Global Environmental Change, 14, 69–86.

    Article  Google Scholar 

  • Nieva, F. J., Díaz-Espejo, A., Castellanos, E. M., & Figueroa, M. E. (2001). Field variability of invading populations of Spartina densiflora Brong. in different habitats of the Odiel Marshes (SW Spain). Estuarine, Coastal and Shelf Science, 52, 515–527.

    Article  CAS  Google Scholar 

  • Patrick, W. H., Jr., & DeLaune, R. D. (1976). Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuarine and Coastal Marine Science, 4, 58–64.

    Article  Google Scholar 

  • Ranwell, D. S., Bird, E. C. F., Hubbard, J. C. R., & Stebbings, R. E. (1964). Spartina salt marshes in Southern England. V. Tidal submergence and chlorinity in Poole Harbour. Journal of Ecology, 52, 627–641.

    Article  Google Scholar 

  • Romero, J. A., Comin, F. A., & Garcia, C. (1999). Restored wetlands as filters to remove nitrogen. Chemosphere, 39, 323–332.

    Article  CAS  Google Scholar 

  • Sousa, A. I., Lillebø, A. I., Caçador, I., & Pardal, M. A. (2008). Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environmental Pollution, 156, 628–635.

    Article  CAS  Google Scholar 

  • Sousa, A. I., Lillebø, A. I., Pardal, M. A., & Caçador, I. (2010a). The influence of Spartina maritima on carbon retention capacity in salt marshes from warm–temperate estuaries. Marine Pollution Bulletin, 61, 215–223.

    Article  CAS  Google Scholar 

  • Sousa, A. I., Lillebø, A. I., Pardal, M. A., & Caçador, I. (2010b). Productivity and nutrient cycling in salt marshes: Contribution to ecosystem health. Estuarine, Coastal and Shelf Science, 87, 640–646.

    Article  CAS  Google Scholar 

  • Touchette, B. W. (2007). Seagrass–salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology, 350, 194–215.

    Article  Google Scholar 

  • Turner, R. E., Swenson, E. M., Milan, C. S., Lee, J. M., & Oswald, T. A. (2004). Below-ground biomass in healthy and impaired salt marshes. Ecological Research, 19, 29–35.

    Article  Google Scholar 

  • Tyler, A. C., Mastronicola, T. A., & McGlathery, K. J. (2003). Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence. Oecologia, 136, 431–438.

    Article  Google Scholar 

  • Wan, S., Qin, P., Liu, J., & Zhou, H. (2009). The positive and negative effects of exotic Spartina alterniflora in China. Ecological Engineering, 35, 444–452.

    Article  Google Scholar 

  • White, D. S., & Howes, B. L. (1994). Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnology and Oceanography, 39, 1878–1892.

    Article  Google Scholar 

  • Wigand, C., McKinney, R. A., Cole, M. L., Thursby, G. B., & Cummings, J. (2007). Varying stable nitrogen isotope ratios of different coastal marsh plants and their relationships with wastewater nitrogen and land use in New England, USA. Environmental Monitoring and Assessment, 131, 71–81.

    Article  CAS  Google Scholar 

  • Windham, L., & Ehrenfeld, J. G. (2003). Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications, 13, 883–897.

    Article  Google Scholar 

  • Zhang, W., Zeng, C., Zhang, L., Wang, W., Lin, Y., & Ai, J. (2009). Seasonal dynamics of nitrogen and phosphorus absorption efficiency of wetland plants in Minjiang River estuary. Ying Yong Sheng Tai XueBao, 20, 1317–1322 (In Chinese).

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Port Authority of Huelva for its support, and the Seville University Greenhouse Service and microanalysis service of CITIUS for collaboration. We also thank Ahmed M. Abbass and Jorge Carrión-Tacuri for invaluable research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curado, G., Rubio-Casal, A.E., Figueroa, E. et al. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes. Environ Monit Assess 185, 8439–8449 (2013). https://doi.org/10.1007/s10661-013-3185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3185-4

Keywords

Navigation