Skip to main content
Log in

Seasonal variations of water column nutrients in the inner area of Ariake Bay, Japan: the role of muddy sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol m−2 day−1. The NO3 –N concentration was maximal in January, which was thought to be caused by NO3 release from the oxic sediments and by NO3 regeneration due to water column nitrification. The PO4 3−–P concentration of the water column was high in summer–autumn due to the high PO4 3− release from the reduced sediments, ranging from 22 to 164 μmol m−2 day−1. We estimated the total amounts of DIN and PO4 3−–P release (R DIN and \( {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} \), respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and \( {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} \) corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3−–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azad, K., Ohira, S., Oda, M., & Toda, K. (2005). On-site measurements of hydrogen sulfide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan. Atmosphere Environment, 39, 6077–6087.

    Article  CAS  Google Scholar 

  • Balzer, W., Grasshof, K., Dieckman, P., Haardt, H., & Peterson, U. (1983). Redox turnover at the sediment–water interface studied in a large bell jar system. Oceanologica Acta, 6, 337–344.

    CAS  Google Scholar 

  • Barbati, A., Ceccherelli, V. U., Frascari, F., Reggiani, G., & Rosso, G. (1992). Nutrient regeneration processes in bottom sediments in a Po Delta Lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment water interface. Hydrobiologia, 228, 1–21.

    Article  Google Scholar 

  • Bertuzz, A., Faganeli, J., Welker, C., & Brambati, A. (1997). Benthic fluxes of dissolved inorganic carbon, nutrients and oxygen in the Gulf of Trieste (Northern Adriatic). Water, Air, and Soil Pollution, 99, 305–314.

    Google Scholar 

  • Boynton, W., Kemp, W. M., & Osbourne, C. G. (1980). Nutrient fluxes across the sediment–water interface in the turbid zone of a coastal plain estuary. In U. S. Kennedy (Ed.), Estuarine perspectives (pp. 93–109). New York: Academic.

    Google Scholar 

  • Bulleid, N. C. (1984). Desoxigenation and remineralization above the sediment water interface; an in situ experimental study. Estuarine, Coastal and Shelf Science, 19, 15–25.

    Article  CAS  Google Scholar 

  • Cabrita, M. T., & Brotas, V. (2000). Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal. Marine Ecology Progress Series, 202, 51–65.

    Article  CAS  Google Scholar 

  • Callender, E., & Hammond, D. E. (1982). Nutrient exchange across the sediment–water interface in the Potomac River estuary. Estuarine, Coastal and Shelf Science, 15(4), 395–413.

    Article  CAS  Google Scholar 

  • Charles, S., Hopkinson, J., Giblin, A. E., & Tucker, J. (2001). Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Marine Ecology Progress Series, 224, 1–19.

    Article  Google Scholar 

  • Christensen, J. P., Devol, A. H., & Smethie, W. M. (1984). Biological enhancement of solute exchange between sediments and bottom water on the Washington continental shelf. Continental Shelf Research, 3, 9–23.

    Article  Google Scholar 

  • Clavero, V., Izquierdo, J. J., Fernandez, J. A., & Niell, F. X. (2000). Seasonal fluxes of phosphate and ammonium across the sediment–water interface in a shallow small estuary (Palmones River, southern Spain). Marine Ecology Progress Series, 198, 51–60.

    Article  CAS  Google Scholar 

  • Conley, D. J., & Schelske, C. L. (1989). Processes controlling the benthic regeneration and sedimentary accumulation of biogenic silica in Lake Michigan. Archives of Hydrobiology, 116, 23–43.

    CAS  Google Scholar 

  • Cowan, J. W., Pennock, J. R., & Boynton, W. R. (1996). Seasonal and interannual patterns of sediment–water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): Regulating factors and ecological significance. Marine Ecology Progress Series, 141, 229–245.

    Article  Google Scholar 

  • Davies, J. M. (1975). Energy flow through the benthos in a Scottish Sea loch. Marine Biology, 31, 353–362.

    Article  CAS  Google Scholar 

  • Denis, L., & Grenz, C. (2003). Spatial variability in oxygen and nutrient fluxes at the sediment–water interface on the continental shelf in the Gulf of Lions (NW Mediterranean). Oceanologica Acta, 26, 373–389.

    Article  CAS  Google Scholar 

  • Denis, L., Grenz, C., Alliot, E., & Rodier, M. (2000). Temporal variability in dissolved inorganic nitrogen fluxes at the sediment–water interface and related annual budget on a continental shelf (NW Mediterranean). Oceanologica Acta, 24, 85–97.

    Article  Google Scholar 

  • Denis, L., Grenz, C., Alliot, E., & Rodier, M. (2001). Temporal variability in dissolved inorganic nitrogen fluxes at the sediment–water interface and released annual budget on a continental shelf (NW Mediterranean). Oceanologica Acta, 24, 85–97.

    Article  CAS  Google Scholar 

  • Fisher, T. R., Carlson, P. R., & Barber, R. T. (1982). Sediment nutrient regeneration in three North Carolina estuaries. Estuarine, Coastal and Shelf Science, 14, 101–116.

    Article  CAS  Google Scholar 

  • Forja, J. M., & Gomez-Parra, A. (1998). Measuring nutrient fluxes across the sediment–water interface using benthic chambers. Marine Ecology Progress Series, 164, 95–105.

    Article  CAS  Google Scholar 

  • Grandel, S., Rickert, D., Schluter, M., & Wallmann, K. (2000). Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep Arabian Sea. Deep-Sea Research II, 47, 2707–2734.

    Article  CAS  Google Scholar 

  • Henriksen, K., & Kemp, W. M. (1988). Nitrification in estuarine and coastal marine sediments: Methods, patterns and regulating factors. In T. H. Blackburn & J. Sørensen (Eds.), Nitrogen cycling in marine environments (pp. 2076–2250). New York: Wiley.

    Google Scholar 

  • Henriksen, K., Hansen, J. I., & Blackburn, T. H. (1981). Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediments from Danish waters. Marine Biology, 61, 299–304.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S. (1987). Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight, USA. Marine Biology, 94, 127–142.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S., & Wetzel, R. L. (1982). In situ measurements of nutrient and oxygen fluxes in a coastal marine benthic community. Marine Ecology Progress Series, 10, 29–35.

    Article  CAS  Google Scholar 

  • Hu, W. F., Lo, W., Chua, H., Sin, S. N., & Yu, P. H. F. (2001). Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong. Environment International, 26, 369–375.

    Article  CAS  Google Scholar 

  • Ingall, E., & Jahnke, R. (1997). Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology, 139, 219–229.

    Article  CAS  Google Scholar 

  • Jones, J. G., Simon, B. M., & Horsley, R. W. (1982). Microbiological sources of ammonia in freshwater lake sediments. Journal of General Microbiology, 118, 2823–2831.

    Google Scholar 

  • Kamiyama, T., Tsujino, M., & Tamami, K. (1998). Estimation of bottom fluxes of several nutrients in Harima Nada, the Seto Inland Sea of Japan. Bulletin of the Nansei National Fisheries Research Institute, 31, 33–43.

    Google Scholar 

  • Kautsky, N. (1984). A battery operated continuous flow enclosure for metabolism studies in benthic communities. Marine Biology, 81, 47–52.

    Article  Google Scholar 

  • Kemp, W. M., Caffrey, S. J., & Mayer, M. (1990). Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography, 35, 1545–1563.

    Article  CAS  Google Scholar 

  • Kemp, W. M., Testa, J. M., Conley, D. J., Gillbert, D., & Hagy, J. D. (2009). Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6, 2985–3008.

    Article  CAS  Google Scholar 

  • Kim, D. H., Matsuda, O., & Yamamoto, T. (1997). Nitrification, denitrification and mitrate reduction rates in the sediment of Hiroshima Bay, Japan. Journal of Oceanography, 53, 317–324.

    CAS  Google Scholar 

  • Kiyomoto, Y., Yamada, K., Nakata, H., Ishizaka, J., Tanaka, K., Okamura, K., Kumagai, K., Umeda, T., & Kino, S. (2008). Long-term increasing trend of transparency and its relationships to red tide outbreaks in Ariake Bay. Oceanography in Japan, 17(5), 337–356 (in Japanese).

    Google Scholar 

  • Koga, A., Koriyama, M., & Seguchi, M. (2011). Relationships between denitrification activity and environmental factors in the tidal sediment of the interior parts of the Ariake Sea. Journal of Hydroscience and Hydraulic Engineering, 29(2), 1–15.

    Google Scholar 

  • Koriyama, M., Seguchi, M., Ishitani, T., & Isnansetyo, A. (2011). Analysis of hypoxia in the western interior parts of the Ariake Sea, Japan, using a box model. Environmental Monitoring and Assessment, 179, 65–80.

    Article  CAS  Google Scholar 

  • Krom, M. D., & Berner, R. A. (1980). The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnology and Oceanography, 25, 327–337.

    Article  CAS  Google Scholar 

  • Kudela, R. M., & Cochlan, W. P. (2000). Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquatic Microbial Ecology, 21, 31–47.

    Article  Google Scholar 

  • Lerat, Y., Lasserre, P., & Corre, P. (1990). Seasonal changes in pore water concentrations of nutrients and their diffusive fluxes at the sediment–water interface. Journal of Experimental Marine Biology and Ecology, 135, 135–160.

    Article  CAS  Google Scholar 

  • Li, V. H., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38, 703–714.

    Article  CAS  Google Scholar 

  • Liu, S., Zhang, J., Chen, H., & Raabe, T. (2004). Benthic nutrient recycling in shallow coastal waters of the Bohai Sea. Chinese Journal of Oceanology and Limnology, 22(4), 365–372.

    Article  CAS  Google Scholar 

  • McCaffrey, R. J., Myers, A. C., Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., & Klinkhammer, G. (1980). The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnology and Oceanography, 25(1), 31–44.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293.

    Article  CAS  Google Scholar 

  • Nabila, M., Gaertner, J.-C., Deslous-Paoli, J.-M., Landrein, S., & d'Oedenberg, M. G. (1996). Nutrient and oxygen exchanges at the water–sediment interface in a shellfish farming lagoon (Thau, France). Journal of Experimental Marine Biology and Ecology, 205, 91–113.

    Article  Google Scholar 

  • Nakashima, M., Yokoyama, Y., Uchida, T., Nakano, T., Yamada, K., & Nakanishi, H. (2006). Analysis of nitrogen budgets in Ariake Bay by long-term simulation with box-type model. Journal of Japan Society on Water Environment, 29(10), 605–611 (in Japanese).

    Article  CAS  Google Scholar 

  • Nedwell, D. B., Hall, S. E., Anderson, A. F., Nagstrom, A. F., & Lindstrom, E. B. (1983). Seasonal changes in the distribution and exchange of inorganic nitrogen between sediment and water in the northern Baltic. Estuarine, Coastal and Shelf Science, 17, 169–179.

    Article  CAS  Google Scholar 

  • Niencheski, L. F., & Jahnke, R. A. (2002). Benthic respiration and inorganic nutrient fluxes in the estuarine region of Patos Lagoon (Brazil). Aquatic Geochemistry, 8, 135–152.

    Article  CAS  Google Scholar 

  • Nixon, S. W., Oviatt, C. A., & Hale, S. S. (1976). Nitrogen regeneration and the metabolism of coastal marine bottom communities. In J. M. Anderson & A. MacFayden (Eds.), The role of terrestrial and aquatic organisms in decomposition processes (pp. 269–283). Oxford: Blackwell.

    Google Scholar 

  • Ogilvi, B., Nedwell, D. B., Harrison, R. M., Robinson, A., & Sage, A. (1997). High nitrate, muddy estuaries as nitrogen sinks: The nitrogen budget of the River Colne estuary (United Kingdom). Marine Ecology Progress Series, 150, 217–228.

    Article  Google Scholar 

  • Ozkan, E. Y., Kocatas, A., & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143, 313–325.

    Article  CAS  Google Scholar 

  • Pomroy, A. J., Joint, I. R., & Claske, K. R. (1983). Benthic nutrient flux in a shallow coastal environment. Oecologia (Berlin), 60, 306–312.

    Article  Google Scholar 

  • Ritzrau, W. (1996). Microbial activity in the benthic boundary layer: Small-scale distribution and its relationship to the hydrodynamic regime. Journal of Sea Research, 36, 171–180.

    Article  Google Scholar 

  • Seiki, T., Izawa, H., & Date, E. (1989). Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay. Water Research, 23(2), 219–228.

    Article  CAS  Google Scholar 

  • Sekiguchi, H., & Ishii, R. (2003). Drastic decreasing of annual catch yields of the manila clam Ruditapes hilippinarum in Ariake Sound, Southern Japan. Oceanography in Japan, 12(1), 21–36 (in Japanese).

    Article  Google Scholar 

  • Shimatu, Y. (2003). Research on the environmental change and degradation and its influence to fisheries production in the Ariake-Bay. Nippon Suisan Gakkaishi, 69, 439–443 (in Japanese).

    Article  Google Scholar 

  • Smith, K. L., Carlucci, A. F., Jahnke, R. A., & Craven, D. B. (1987). Organic carbon mineralization in the Santa Catalina Basin: Benthic boundary layer metabolism. Deep-Sea Research, 34(2), 185–211.

    Article  CAS  Google Scholar 

  • Tada, K., & Ichimi, K. (2009). Microphytobenthos activity and nutrient upward flux from the bottom sediment in the shallow coastal water. Bulletin on Coastal Ocenography, 47(1), 29–37 (in Japanese).

    Google Scholar 

  • Trimmer, M., Nedwell, D. B., Sivyer, D. B., & Malcolm, S. J. (1998). Nitrogen fluxes through the lower estuary of the river Great Ouse, England: The role of the bottom sediments. Marine Ecology Progress Series, 163, 109–124.

    Article  CAS  Google Scholar 

  • Vanderborght, J. P., & Billen, G. (1975). Vertical distribution of nitrate concentrations in interstitial water of marine sediments with nitrification and denitrification. Limnology and Oceanography, 20, 953–961.

    Article  CAS  Google Scholar 

  • Warnken, K. W., Gill, G. A., Santschi, P. H., & Griffin, L. L. (2000). Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries, 23(5), 647–661.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Kawamura, Y., & Handa, T. (2004). Porphyra (or nori) aquaculture and nutrient condition in the Ariake Bay, Japan. Bulletin on Coastal Oceanography, 42(1), 47–54 (in Japanese).

    Google Scholar 

  • William, G. R., Daniel, L. G., & George, M. S. (1995). Sediment–water column oxygen and nutrient fluxes in nearshore environments of the lower Delmarva Peninsula, USA. Marine Ecology Progress Series, 118, 215–227.

    Article  Google Scholar 

  • Wollast, R. (1991). The coastal organic carbon cycle: Fluxes, sources, and sinks. In R. F. C. Mantoura, J. M. Martin, & R. Wollast (Eds.), Ocean margin processes in global change (pp. 365–381). Chichester: Wiley.

    Google Scholar 

  • Yamaguchi, S., & Hayami, Y. (2009). Behavior of low salinity water and its implication for the water quality after freshets at the head of the Ariake Sea. Bulletin on Coastal Oceanography, 46(2), 161–173 (in Japanese).

    Google Scholar 

  • Yamaguchi, S., Hamada, T., Hayami, Y., Seguchi, M., & Ohguchi, K. (2009). Seasonal and temporal variation in flow off Chikugo River mouth in the inner part of Ariake Sea. Journal of Japan Society of Civil Engineers, Series B2 (Coastal Engineering), 65(1), 436–440 (in Japanese).

    Article  Google Scholar 

  • Yamamoto, T., Matsuda, O., Hashimoto, T., Imose, H., & Kitamura, T. (1998). Estimation of benthic fluxes of dissolved inorganic nitrogen and phosphorus from sediments of the Seto Inland Sea. Oceanography in Japan, 7(3), 151–158 (in Japanese).

    Article  CAS  Google Scholar 

  • Yanagi, T., & Abe, R. (2005). Nitrogen budget change in Ariake Bay between 1979 and 1999. Oceanography in Japan, 15(1), 67–75 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Koriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koriyama, M., Hayami, Y., Koga, A. et al. Seasonal variations of water column nutrients in the inner area of Ariake Bay, Japan: the role of muddy sediments. Environ Monit Assess 185, 6831–6846 (2013). https://doi.org/10.1007/s10661-013-3068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3068-8

Keywords

Navigation