Skip to main content

Advertisement

Log in

Monitoring the formation of structures and patterns during initial development of an artificial catchment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Amundson, R., Richter, D. D., Humphreys, G. S., Jobbágy, E. G., & Gaillardet, J. (2007). Coupling between biota and earth materials in the critical zone. Elements, 3, 327–332.

    Article  CAS  Google Scholar 

  • Arndt, S. K. (2006). Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant and Soil, 285(1–2), 1–3.

    Article  CAS  Google Scholar 

  • Baasch, A., Tischew, S., & Bruelheide, H. (2009). Insights into succession using temporally repeated habitat models: results from a long-term study in a post-mining landscape. Journal of Vegetation Science, 20, 629–638.

    Article  Google Scholar 

  • Badorreck, A., Gerke, H. H., & Vontobel, P. (2010). Noninvasive observation of flow patterns in locally heterogeneous mine soils using neutron radiation. Vadose Zone Journal, 9, 362–372.

    Article  CAS  Google Scholar 

  • Bogena, H., Schulz, K., & Vereecken, H. (2006). Towards a network of observatories in terrestrial environmental research. Advances in Geoscience, 9, 109–114.

    Article  Google Scholar 

  • Bormann, H. (2011). Treating an artificial catchment as ungauged: increasing the plausibility of an uncalibrated, process-based SVAT scheme by using additional soft and hard data. Physics and Chemistry of the Earth, 36, 615–629.

    Article  Google Scholar 

  • Bormann, H., Holländer, H. M., Blume, T., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Krauße, T., Nazemi, A., Stamm, C., Stoll, S., Blöschl, G., & Flühler, H. (2011). Comparative discharge prediction from a small artificial catchment without model calibration: representation of initial hydrological catchment development. Die Bodenkultur, 62, 23–29.

    Google Scholar 

  • Brantley, S. L., White, T. S., White, A. F., Sparks, D., Richter, D., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O., April, R., Anerson, S., & Amundson, R. (2006). Frontiers in exploration of the critical zone: report of a workshop sponsored by the National Science Foundation (NSF), October 24–26, 2005 (p. 30). DE: Newark.

    Google Scholar 

  • Bresson, L.-M., & Boiffin, J. (1990). Morphological characterization of soil crust development stages on an experimental field. Geoderma, 47, 301–325.

    Article  Google Scholar 

  • Buczko, U., Gerke, H. H., & Hüttl, R. F. (2001). Spatial distributions of lignite mine spoil properties for simulating 2D variably saturated flow and transport. Ecological Engineering, 17, 103–114.

    Article  Google Scholar 

  • Campbell, J.L., Driscoll, C.T., Eagar, C., Likens, G.E., Siccama, T.G., Johnson, C.E., Fahey, T.J., Hamburg, S.P., Holmes, R.T., Bailey, A.S., & Buso, D.C. (2007). Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest. Gen. Tech. Rep. NRS-17. Newtown Square, PA: U.S. Dept. Agriculture, Forest Service, Northern Research Station.

  • Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100, 321–353.

    Article  CAS  Google Scholar 

  • Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O., & Bogaert, J. (2008). The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography, 17, 715–723.

    Article  Google Scholar 

  • Del Moral, R. (2009). Increasing deterministic control of primary succession on Mounz St. Helens, Washington. Journal of Vegetation Science, 20, 1145–1154.

    Article  Google Scholar 

  • Ellenberg, H., Mayer, R., & Schauermann, J. (1986). Ökosystemforschung; Ergebnisse des Sollingprojektes 1966–1986. Stuttgart: Ulmer.

    Google Scholar 

  • Elmer, M., Schaaf, W., Biemelt, D., Gerwin, W. Hüttl, R.F. (eds.) (2011) The artificial catchment Chicken Creek—initial ecosystem development 2005–2010: Ecosystem Development, 3 (urn:nbn:de:kobv:co1-opus-23730), Cottbus, pp. 162

  • Fischer, T., Veste, M., Schaaf, W., Bens, O., Dümig, A., Kögel-Knabner, I., Wiehe, W., & Hüttl, R. F. (2010). Pedogenesis in a topsoil crust three years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry, 101, 165–176.

    Article  Google Scholar 

  • Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52.

    Article  Google Scholar 

  • Kappen, L., Blume, H.-P., & Dierssen, K. (Eds.). (2008). Ecosystem organization of a complex landscape; long-term research in the Bornhöved Lake District, Germany (Ecological Studies, Vol. 202). Berlin: Springer.

    Google Scholar 

  • Gast, M., Schaaf, W., Wilden, R., Scherzer, J., Schneider, B. U., & Hüttl, R. F. (2001). Water and element budgets of pine stands on lignite and pyrite containing mine soils. Journal of Geochemical Exploitation, 73, 63–74.

    Article  CAS  Google Scholar 

  • Gerwin, W., Schaaf, W., Biemelt, D., Elmer, M., Maurer, T., & Schneider, A. (2010). The artificial catchment ‘Hühnerwasser’ (Chicken Creek): construction and initial properties. Ecosystem Development, 1, 56.

    Google Scholar 

  • Gerwin, W., Schaaf, W., Biemelt, D., Fischer, A., Winter, S., & Hüttl, R. F. (2009). The artificial catchment “Chicken Creek” (Lusatia, Germany)—a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecological Engineering, 35, 1786–1796.

    Article  Google Scholar 

  • Gerwin, W., Schaaf, W., Biemelt, D., Winter, S., Fischer, A., Veste, M., & Hüttl, R. F. (2011). Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany). Physics and Chemistry of the Earth, 36, 61–73.

    Article  Google Scholar 

  • Grayson, R. B., Blöschl, G., Western, A. W., & McMahon, T. A. (2002). Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources, 25, 1313–1334.

    Article  Google Scholar 

  • Groffman, P. M., Baron, J. S., Blett, T., Gold, A. J., Goodman, I., Gunderson, L. H., Levinson, B. M., Palmer, M. A., Paerl, H. W., Peterson, G. D., Poff, N. L., Rejeski, D. W., Reynolds, J. F., Turner, M. G., Weathers, K. C., & Wiens, J. (2006). Ecological thresholds. The key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1–13.

    Article  Google Scholar 

  • Hofer, M., Lehmann, P., Biemelt, D., Stähli, M., & Krafczyk, M. (2011). Modelling subsurface drainage pathways in an artificial catchment. Physics and Chemistry of the Earth, 36, 101–112.

    Article  Google Scholar 

  • Holländer, H. M., Blume, T., Bormann, H., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Stamm, C., Stoll, S., Blöschl, G., & Flühler, H. (2009). Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrology and Earth System Science, 13, 2069–2094.

    Article  Google Scholar 

  • Hölzel, H., Rössler, O., & Diekkrüger, B. (2011). Grope in the dark—hydrological modelling of the artificial Chicken Creek catchment without validation possibilities. Physics and Chemistry of the Earth, 36, 113–122.

    Article  Google Scholar 

  • Jørgensen, S. E., Patten, B. C., & Straškraba, M. (2000). Ecosystem emerging: 4. Growth. Ecological Modelling, 126, 249–284.

    Article  Google Scholar 

  • Jørgensen, S. E. (Ed.). (2009). Ecosystem ecology (p. 521). Amsterdam: Elsevier.

    Google Scholar 

  • Kelly, E., Chadwick, O. A., & Hilinski, T. E. (1998). The effect of plants on mineral weathering. Biogeochemistry, 42, 21–53.

    Article  Google Scholar 

  • Kendzia, G., Reißmann, R., & Neumann, T. (2008). Targeted development of wetland habitats for nature conservation fed by natural inflow in the post-mining landscape of Lusatia. World of Mining—Surface & Underground, 60(2), 88–95.

    Google Scholar 

  • Kirchner, J. W. (2009). Catchments as simple dynamic systems: catchment characterization, rainfall-runoff modelling, and doing hydrology backward. Water Resources Research, 45, W02429. doi:10.1029/2008WR006912.

    Article  Google Scholar 

  • Krümmelbein, J., Horn, R., Raab, T., Bens, O., & Hüttl, R. F. (2010). Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany. Soil & Tillage Research, 111, 19–25.

    Article  Google Scholar 

  • Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 85–115.

    Article  Google Scholar 

  • Likens, G. E., & Haeuber, R. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5, 253–260.

    Article  Google Scholar 

  • Likens, G. E. (1999). The science of nature, the nature of science: long-term ecological studies at Hubbard Brook. Proceedings of the American Philosophical Society, 143, 558–572.

    Google Scholar 

  • Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem. New York: Springer. 159 pp.

    Book  Google Scholar 

  • Lindenmayer, D. B., & Likens, G. E. (2009). Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends in Ecology & Evolution, 24, 482–486.

    Article  Google Scholar 

  • Littmann, T., Hering, E., & Koch, S. (2000). What happens to rainfall at the desert margin? Water infiltration experiments in a sandy arid area. Hallesches Jahrbuch für Geowissenschaften, 22, 49–58.

    Google Scholar 

  • Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., Shanley, J. B., Likens, G. E., & Haeuber, R. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5(5), 253–260.

    Article  Google Scholar 

  • Ludwig, J. A., Wiens, J. A., & Tongway, D. J. (2000). A scaling rule for landscape patches and how it applies to conserving soil resources in savannas. Ecosystems, 3, 84–97.

    Article  Google Scholar 

  • Mazur, K., Schönheinz, D., Biemelt, D., Schaaf, W., & Grünewald, U. (2010). Observation of hydrological processes and structures in the artificial Chicken Creek catchment. Physics and Chemistry of the Earth, 36, 74–86.

    Article  Google Scholar 

  • McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., & Pinay, G. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.

    Article  CAS  Google Scholar 

  • Neal, C., Reynolds, B., Neal, M., Hill, L., Wickham, H., & Pugh, B. (2003). Nitrogen in rainfall, cloud water, throughfall, stemflow, stream water and groundwater for the Plynlimon catchments of mid-Wales. Science of the Total Environment, 314–316, 121–151.

    Article  Google Scholar 

  • Nisbet, E. (2007). Cinderella science. Nature, 450, 789–790.

    Article  CAS  Google Scholar 

  • Parr, T. W., Ferretti, M., Simpson, I. C., Forsius, M., & Kovacs-Lang, E. (2002). Towards a long-term integrated monitoring programme in Europe: network design in theory and practice. Environmental Monitoring and Assessment, 78, 253–290.

    Article  CAS  Google Scholar 

  • Pennisi, E. (2010). A groundbreaking observatory to monitor the environment. Science, 328, 418–420.

    Article  CAS  Google Scholar 

  • Roering, J. J., Marshall, J., Booth, A. M., Mort, M., & Hin, Q. (2010). Evidence for biotic controls on topography and soil production. Earth and Planetary Science Letters, 298, 183–190.

    Article  CAS  Google Scholar 

  • Rudolph, B., & Rubel, F. (2005). Global precipitation. In M. Hantel (Ed.), Observed global climate. Geophysics, vol. 6. Berlin: Springer.

    Google Scholar 

  • Schaaf, W., & Hüttl, R. F. (2006). Direct and indirect effects of soil pollution by lignite mining. Water Air and Soil Pollution—Focus, 6, 253–264.

    Google Scholar 

  • Schaaf, W., Biemelt, D., Hüttl, R.F. (Eds.) (2010). Initial development of the artificial catchment ´Chicken Creek’—monitoring program and survey 20052008. Ecosystem Development, vol. 2, 190 pp

  • Schaaf, W., Bens, O., Fischer, A., Gerke, H. H., Gerwin, W., Grünewald, U., Holländer, H. M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S., & Hüttl, R. F. (2011). Patterns and processes of initial terrestrial ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229–239.

    Article  CAS  Google Scholar 

  • Schaub, M., Dobbertin, M., Kräuchi, N., & Dobbertin, M. K. (2011). Preface—long-term ecosystem research: understanding the present to shape the future. Environmental Monitoring and Assessment, 174, 1–2.

    Article  Google Scholar 

  • Schleppi, P., Muller, N., Feyern, H., Papritz, A., Bucher, J. B., & Fluhler, H. (1998). Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. Forest Ecology and Management, 101, 177–185.

    Article  Google Scholar 

  • Torrent, J., & Nettleton, W. D. (1978). Feedback processes in soil genesis. Geoderma, 20, 281–287.

    Article  Google Scholar 

  • Sun, G.-Q., Jin, Z., & Tan, Q. (2010). Measurement of self-organization in arid ecosystems. Journal of Biological Systems, 18, 495–508.

    Article  Google Scholar 

  • Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., & Oldeland, J. (2010). Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology, 3, 226–237. doi:10.1002/eco.70.

    Google Scholar 

  • van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering. A true case of mineral plant nutrition? Biogeochemistry, 49, 53–67.

    Article  Google Scholar 

  • van de Koppel, J., & Rietkerk, M. (2000). Herbivore regulation and irreversible vegetation change in semi-arid grazing systems. Oikos, 90, 253–260.

    Article  Google Scholar 

  • Wagner, A. (2009). Literature study on the correction of precipitation measurements. Bavarian State Institute of Forestry. FutMin C1-Met-29(BY)

  • Waide, R., French, C., Sprott, P. Williams, L. (1998). The International Long Term Ecological Research Network 1998. US LTER Network, Department of Biology, University of New Mexico

  • Wellbrock, N., Rick, W., & Wolff, B. (2005). Characterisation of and changes in the atmospheric deposition situation in German forest ecosystems using multivariate statistics. European Journal of Forest Research, 124, 261–271.

    Article  CAS  Google Scholar 

  • Yair, A., Veste, M., Almo, G. R., & Breckle, S. (2008). Geo-ecology characteristics and sensitivity of a sandy area to climate change along a rainfall gradient at a desert fringe. In S. W. Breckle, A. Yair, & M. Veste (Eds.), Arid dune ecosystems—the Nizzana sands in the Negev Desert (Ecological studies, Vol. 200). Berlin: Springer.

    Google Scholar 

  • Zaplata, M.K., Fischer, A. Winter S. (2010). Vegetation dynamics. Ecosystem Development, vol. 2, pp. 71–96

  • Zaplata, M. K., Winter, S., Biemelt, D., & Fischer, A. (2011). Immediate shift towards source dynamics: the pioneer species Conyza canadensis in an initial ecosystem. Flora, 206, 928–934.

    Article  Google Scholar 

  • Zaplata, M.K., Winter, S., Fischer, A., Kollmann, J. Ulrich, W. (2012). Species-driven phases and increasing structure in early-succesional plant communities. The American Naturalist (in press)

Download references

Acknowledgments

The Transregional Collaborative Research Centre (CRC/TR) 38 “Structures and Processes of the Initial Ecosystem Development Phase in an Artificial Water Catchment” (www.tu-cottbus.de/sfb_trr) funded by the Deutsche Forschungsgemeinschaft (DFG) and by the Brandenburg Ministry of Science and Research was established in July 2007 as an initiative of three universities (BTU Cottbus, TU München, and ETH Zurich). The artificial catchment “Chicken Creek” was constructed with the technical and financial support provided by Vattenfall Europe Mining. We thank Silvio Vogt, Gunter Bormann, Uwe Enke, Patrick Willner, Ralph Dominik, and Marin Dimitrov for their help with the fieldwork, microdrone programming, routine sampling, and maintenance. Many thanks to Gabi Franke, Regina Müller, Helga Köller, Evi Müller, and Anita Maletzki for the analyses of the samples together with Nonka Markova, Natasha Beltran, Ina Hovy, Carmen Schulze, and Tsvetelina Dimitrova. Detlef Biemelt (Hydrology and Water Resources Management, BTU Cottbus) provided the meteorological and hydrological data. Thomas Seiffert carried out the georeferencing of the drone images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schaaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaaf, W., Elmer, M., Fischer, A. et al. Monitoring the formation of structures and patterns during initial development of an artificial catchment. Environ Monit Assess 185, 5965–5986 (2013). https://doi.org/10.1007/s10661-012-2998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2998-x

Keywords

Navigation