Skip to main content
Log in

Characterisation of sulphide-bearing waste-rock dumps using electrical resistivity imaging: the case study of the Rio Marina mining district (Elba Island, Italy)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sulphide-bearing mine dumps are potential sources of pollution when acid mine drainage (AMD) occurs. Because the generation of AMD depends on the volume and composition of waste materials, their characterisation is crucial for the evaluation of geochemical hazards and for the design of remediation strategies to minimise their environmental impact. In this paper, a cost-effective strategy for the characterisation of an inactive mine dump in the Rio Marina mining district (Elba Island, Italy) using earth resistivity imaging (ERI) is presented. As no information regarding the nature of waste rocks is found in reports for the mine, five ERI profiles were acquired at the top of the waste pile. The results show that waste rocks are heterogeneous with a maximum thickness of 30 m. Due to the large amounts of dispersed sulphide minerals, the waste rocks are characterised by an electrically conductive geophysical signature in comparison to the surrounding resistive metamorphic bedrock. A geostatistical approach was adopted to estimate the elevation of the edges of the mine dump, and the net volume of the waste rocks was computed through a raster analysis of the elevations of the upper and lower boundaries of the mine dump. High-conductivity anomalies were detected within the core of the mine dump. The integration of the hydrogeological, geochemical and geological framework of the Rio Marina mining district suggests that these anomalies could be a geophysical signature of subsurface regions where AMD is currently generated or stored, thus representing sources of environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anterrieu, O., Chouteau, M., & Aubertin, M. (2010). Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bulletin of Engineering Geology and the Environment, 69, 533–548. doi:10.1007/s10064-010-0264-4.

    Article  CAS  Google Scholar 

  • ARPAT-Agenzia Regionale per la Protezione Ambientale della Toscana (2004). Indagine ambientale sulle aree ex minerarie dell’Isola d’Elba. Parte 1a: relazione.

  • Benvenuti, M., Bortolotti, V., Conticelli, S., Pandeli, E., & Principi, G. (2001). Elba Island. Introduction. Ofioliti, 26(2a), 321–330.

    Google Scholar 

  • Bernstone, C., & Dahlin, T. (1997). DC resistivity mapping of old landfills: Two case studies. European Journal of Environmental and Engineering Geophysics, 2, 121–136.

    Google Scholar 

  • Bernstone, C., Dahlin, T., Ohlsson, T., & Hogland, W. (2000). DC-resistivity mapping of internal landfill structures: Two pre-excavation surveys. Environmental Geology, 39, 360–371. doi:10.1007/s002540050015.

    Article  CAS  Google Scholar 

  • Bersezio, R., Giudici, M., & Mele, M. (2007). Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202, 230–248. doi:10.1016/j.sedgeo.2007.05.002.

    Article  Google Scholar 

  • Binley, A., Cassiani, G., Middleton, R., & Winship, P. (2002). Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. Journal of Hydrology, 267, 147–159. doi:10.1016/S0022-1694(02)00146-4.

    Article  Google Scholar 

  • Blowes, D. W., Turekian, K. K., et al. (2003). Treatise on geochemistry. In B. S. Lollar & H. D. Holland (Eds.), The geochemistry of acid mine drainage, In: Environmental geochemistry (Vol. 9, pp. 149–204). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Bortolotti, V., Fazzuoli, M., Pandeli, E., Principi, G., Babbini, A., & Corti, S. (2001). Geology of central and eastern Elba Island, Italy. Ofioliti, 26(2a), 97–150.

    Google Scholar 

  • Bowling, J. C., Harry, D. L., Rodriguez, A. B., & Zheng, C. (2007). Integrated geophysical and geological investigation of a heterogeneous fluvial aquifer in Columbus Mississippi. Journal of Applied Geophysics, 62, 58–73. doi:10.1016/j.jappgeo.2006.08.003.

    Article  Google Scholar 

  • Buselli, G., Hwang, H. S., & Lu, K. (1998). Minesite groundwater contamination mapping. Exploration Geophysics, 29, 296–300. doi:10.1071/EG998296.

    Article  Google Scholar 

  • Carpenter, P. J., Kaufmann, R. S., & Price, B. (1990). Use of resistivity soundings to determine landfill structure ground water. Ground Water, 28(4), 569–575. doi:10.1111/j.1745-6584.1990.tb01713.x.

    Article  CAS  Google Scholar 

  • Cella, E. (2008). Indagini geochimiche e mineralogiche dei terreni nell’area mineraria dismessa di Valle Giove (Isola d’Elba) Unpublished degree thesis, University of Milan.

  • Chambers, J., Kuras, O., Meldrum, P., & Ogilvy, R. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71(6), B231–B239. doi:10.1190/1.2360184.

    Article  Google Scholar 

  • Chiles, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.

    Book  Google Scholar 

  • da Silva, J. C., do Amaral Vargas, E., & Sracek, O. (2009). Modeling multiphase reactive transport in a waste rock pile with convective oxygen supply. Vadose Zone Journal, 8, 1038–1050. doi:10.2136/vzj2008.0156.

    Article  Google Scholar 

  • D’Achiardi, G. (1927). L’Industria mineraria e metallurgica in toscana al tempo degli Etruschi. Comitato permanente per 1’Etruria (Eds.), Studi Etruschi, 1, 411–419.

    Google Scholar 

  • Dahlin, T. (2001). The development of DC resistivity images techniques. Computer and Geosciences, 2, 1019–1029. doi:10.1016/S0098-3004(00)00160-6.

    Article  Google Scholar 

  • Dall’Aglio, M. (2004). Geochimica ambientale e salute, Principi e applicazioni. Roma: Aracne editrice.

    Google Scholar 

  • Deschamps, Y., Dagallier, G., Macaudière, J., Marignac, C., Moine, B., & Saupé, F. (1983a). Le gisement de pyrite-hématite de Valle Giove (Rio Marina, Ile d’Elbe, Italie), Partie 1. Schweizerische Mineralogische und Petrographische Mitteilungen, 63, 149–165.

    CAS  Google Scholar 

  • Deschamps, Y., Dagallier, G., Macaudière, J., Marignac, C., Moine, B., & Saupé, F. (1983b). Le gisement de pyrite-hématite de Valle Giove (Rio Marina, Ile d’Elbe, Italie), Partie 2. Schweizerische Mineralogische und Petrographische Mitteilungen, 63, 301–327.

    CAS  Google Scholar 

  • D’Oriano, V. (2007). Planimetria di Rio Marina. Internal report.

  • Ebraheem, A. M., Hamburger, M. W., Bayless, E. R., & Krothe, N. C. (1990). A study of acid mine drainage using earth resistivity measurements. Ground Water, 28, 361–368. doi:10.1111/j.1745-6584.1990.tb02265.x.

    Article  CAS  Google Scholar 

  • Ferromin (1954). Planimetria generale miniera Rio Marina. Internal report.

  • Ficklin, W. H., et al. (1992). Proceedings of water–rock interaction n. 7. In Y. K. Kharaka & A. S. Maest (Eds.), Geochemical classification of mine drainages and natural drainages in mineralised areas (pp. 381–384). Balema: Rotterdam.

    Google Scholar 

  • Fala, O., Molson, J., Aubertin, M., & Bussière, B. (2005). Numerical modelling of flow and capillary barrier effects in unsaturated waste rock piles. Mine Water and the Environment, 24(4), 172–185. doi:10.1007/s10230-005-0093-z.

    Article  CAS  Google Scholar 

  • Godio, A., & Naldi, M. (2003). Two-dimensional electrical imaging for detection of hydrocarbon contaminants. Near Surface Geophysics, 1, 131–137. doi:10.3997/1873-0604.2003003.

    Google Scholar 

  • Guérin, R., Munoz, M. L., Aran, C., Laperrelle, C., Hidra, M., Drouart, E., & Grellier, S. (2004). Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Management, 24, 785–794. doi:10.1016/j.wasman.2004.03.010.

    Article  Google Scholar 

  • Historical Archive of “Elba Island Mineralogical and Mining Park” (1991). http://www.parcominelba.it/. Accessed 29.03.12.

  • Ian Wark Research Institute (IWRI), Environmental Geochemistry International (EGI). (2002). ARD Test Handbook. Australian Mineral Industries Research Association (AMIRA) P387A Project: Prediction and kinetic control of acid mine drainage. Melbourne, Australia: AMIRA International.

    Google Scholar 

  • Italsider. (1979). Miniere dell’Elba, Rio Marina. Internal Report: Piano Generale.

    Google Scholar 

  • Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. Oxford: Pergamon Press.

    Google Scholar 

  • Kim, J. W., Choi, H., & Lee, J. Y. (2005). Characterization of hydrogeologic properties for a multi-layered alluvial aquifer using hydraulic and tracer tests and electrical resistivity survey. Environmental Geology, 48, 991–1001. doi:10.1007/s00254-005-1299-x.

    Article  CAS  Google Scholar 

  • Lefebvre, R., Hockley, D., Smolensky, J., & Gélinas, P. (2001). Multiphase transfer process in waste rock piles producing acid mine drainage 1. Conceptual model and system characterization. Journal of Contaminant Hydrology, 52, 137–164. doi:10.1016/S0169-7722(01)00156-5.

    Article  CAS  Google Scholar 

  • Liang, H. C., & Thomson, B. M. (2010). Minerals and mine drainage. Water Environment Research, 49, 1485–1533. doi:10.2175/106143010X12756668801491.

    Article  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682–1690. doi:10.1190/1.1443900.

    Article  Google Scholar 

  • Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34, 182–187. doi:10.1071/EG03182.

    Article  Google Scholar 

  • Lottermost, B. G. (2010). Mine wastes: Characterization, treatment and environmental impacts (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Marinelli, G. (1983). Il magmatismo recente in Toscana e le sue implicazioni minerogenetiche. Memorie della Società Geologica Italiana, 25, 111–124.

    CAS  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. doi:10.2113/gsecongeo.58.8.1246.

    Article  CAS  Google Scholar 

  • McCarter, M. K. (1990). Design and operating considerations for mine waste embankments. In S. Mining & S. Edition (Eds.), Eds: B A Kennedy (pp. 890–899). Littleton: Society for Mining, Metallurgy and Exploration.

    Google Scholar 

  • McKeowen, R., Barbour, S. L., Rowlett, D., & Herasymuik, G. (2000). Characterization of the grain-size distribution for waste rock from metal mines—A review of existing grain size data and an evaluation of the implications for hydrogeologic behavior (pp. 203–209). London, Ontario: Canadian Society of Civil Engineers CSCE Annual Conference.

    Google Scholar 

  • Mele, M., Bersezio, R., & Giudici, M. (2012). Hydrogeophysical imaging of alluvial aquifers: Electrostratigraphic units in the quaternary Po alluvial plain. International Journal of Earth Sciences. doi:10.1007/s00531-012-0754-7.

  • Merkel, R. H. (1972). The use of resistivity techniques to delineate acid mine drainage in ground water. Ground Water, 10(5), 38–42. doi:10.1111/j.1745-6584.1972.tb03590.x.

    Article  Google Scholar 

  • Molson, J. W., Fala, O., Aubertin, M., & Bussière, B. (2005). Numerical simulation of pyrite oxidation and acid mine drainage in unsaturated rock piles. Journal of Contaminant Hydrology, 78, 343–371. doi:10.1016/j.jconhyd.2005.06.005.

    Article  CAS  Google Scholar 

  • Molson, J., Aubertin, M., Bussière, B., & Benzaazoua, M. (2008a). Geochemical transport modelling of drainage from experimental mine tailings cells covered by capillary barriers. Applied Geochemistry, 23, 1–24. doi:10.1016/j.apgeochem.2007.08.004.

    Article  CAS  Google Scholar 

  • Molson, J., Fala, O., Aubertin, M., Bussière, B. (2008b). Geochemical transport modelling of acid mine drainage within heterogeneous waste rock piles. In: Proceedings of the 61st Canadian Geotechnical Conference and 9th Joint CSG/IAH-CNC Groundwater Specialty Conference, Edmonton, Alta., 21–24 September 2008. BiTech Publishers Ltd., Richmond, B.C. pp. 1586–1593.

  • Morin, K.A., Gerencher, E., Jones, C.E., Konasewich, D.E. (1991). Critical literature review of acid drainage from waste rock. Mine Environment Neutral Drainage (MEND) Report 1.11.1, CANMET, 175 pp.

  • Nordstrom, D.K., & Alpers, C.N. (1999). Geochemistry of acid mine waters. In: The environmental geochemistry of mineral deposits, Reviews in Economic Geology 6a, Plumlee, G.S., and Logsdon, M.J. (eds), 133–160.

  • Ogilvy, R., Meldrum, P., & Chambers, J. (1999). Imaging of industrial waste deposits and buried quarry geometry by 3-D resistivity tomography. European Journal of Environmental and Engineering Geophysics, 3, 103–113.

    Google Scholar 

  • Placencia-Gómez, E., Parviainen, A., Hokkanen, T., & Loukola-Ruskeeniemi, K. (2010). Integrated geophysical and geochemical study on AMD generation at the Haveri Au–Cu mine tailings, SW Finland. Environmental Earth Sciences, 61, 1435–1447. doi:10.1007/s12665-010-0459-9.

    Article  Google Scholar 

  • Plumlee, G.S. (1999). The environmental geology of mineral deposits. In: The environmental geochemistry of mineral deposits, reviews in economic geology 6a, Plumlee, G.S., and Logsdon, M.J. (Eds.), 71–116.

  • Plumlee, G. S., & Ziegler, T. L. (2003). Treatise on geochemistry. In B. S. Lollar, H. D. Holland, & K. K. Turekian (Eds.), The medical geochemistry of dusts, soils, and other earth materials. In: Environmental geochemistry (Vol. 9, pp. 263–310). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Poisson, J., Choteau, M., Aubertin, M., & Campos, A. (2009). Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. Journal of Applied Geophysics, 67, 179–192. doi:10.1016/j.jappgeo.2008.10.011.

    Article  Google Scholar 

  • Reynolds, J. M. (2011). An introduction to applied and environmental geophysics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Rucker, D. F., Glaser, D. R., Osborne, T., & Maehl, W. C. (2009). Electrical resistivity characterization of a reclaimed gold mine to delineate acid rock drainage pathways. Mine Water and the Environment, 28, 146–157. doi:10.1007/s10230-009-0072-x.

    Article  CAS  Google Scholar 

  • Schön, J. H. (2004). Physical properties of rocks: fundamentals and principles of petrophysics. Amsterdam: Elsevier.

    Google Scholar 

  • Servida, D., De Capitani, L., & Grieco, G. (2009). Geochemical hazard evaluation of sulphide-rich iron mines: The Rio Marina district (Elba Island, Italy). Journal of Gochemical Exploration, 100, 75–89. doi:10.1016/j.gexplo.2008.03.005.

    Article  CAS  Google Scholar 

  • Servida, D., Gatta, G.D., De Capitani, L., Greco, G., Carbone, C. & Marescotti, P. (2009b). Acid mine drainage evaluation: From qualitative to quantitative mineralogy. In: Rendiconti Online della Società Geologica Italiana, vol. 6, Atti del 3° Congresso nazionale AIGA, AA.VV. S. Giovanni Valdarno (AR), 25–27 February 2009

  • Sracek, O., Choquette, M., Gelinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. Jouranl of Contaminant Hydrology, 69, 45–71. doi:10.1016/S0169-7722(03)00150-5.

    Article  CAS  Google Scholar 

  • Tanelli, G., & Lattanzi, P. (1986). Metallogeny and mineral exploration in Tuscany: State of the art. Memorie della Società Geologica Italiana, 31, 299–304.

    Google Scholar 

  • Tanelli, G., Benvenuti, M., Costagliola, P., Dini, A., Lattanzi, P., Maineri, C., Mascaro, I., & Ruggieri, G. (2001). The iron mineral deposits of Elba Island: State of the art. Ofioliti, 26(2a), 239–248.

    Google Scholar 

  • Telford, W.M., Geldart, L.P., Sheriff, R.E. (1990). Applied geophysics, 2nd edition. Cambridge University Press, New York, NY.

  • Vichery, A., & Hobbs, B. (2003). Resistivity imaging to determine clay cover and permeable units at an ex-industrial site. Near Surface Geophysics, 1, 21–30.

    Google Scholar 

  • Ward, S.H. (1990). Resistivity and induced polarization methods. In: St Ward (eds.) Geotechnical and environmental geophysics—Investigation in geophysics n°5 SEG, 169–189.

  • Watson, D. B., Doll, W. E., Gamey, T. J., Sheehan, J. R., & Jardine, P. M. (2005). Plume and lithologic profiling with surface resistivity and seismic tomography. Ground Water, 43(2), 169–177. doi:10.1111/j.1745-6584.2005.0017.x.

    Article  CAS  Google Scholar 

  • Watts, R.J., & Teel, A.L. (2003). Groundwater and air contamination: risk, toxicity, exposure assessment, policy and regulation. In: Environmental geochemistry, Lollar, B.S. (eds.), 149–204, In: Treatise on geochemistry, Holland, H.D., and Turekian, K.K. (eds.), vol. 9, Oxford: Elsevier-Pergamon.

  • Yuval, D., & Oldenburg, W. (1996). DC resistivity and IP methods in acid mine drainage problems: Results from the Copper Cliff mine tailings impoundments. Journal of Applied Geophysics, 34(3), 187–198. doi:10.1016/0926-9851(95)00020-8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Elba Island Mineralogical and Mining Park for their cooperation, and M. Lunghi, G. Muti, Bruno and Claudio for logistical and technical support. We also thank Mauro Giudici, Luisa De Capitani and Riccardo Bersezio for their critical reading and Fabrizio Felletti for his helpful suggestions. Thanks to an anonymous reviewer for his helpful comments and suggestions. Nicandro Crolla and Davide Grassi are warmly acknowledged for their help during field data acquisition. This work was supported by “Dote ricerca”: FSE–Regione Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Mele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mele, M., Servida, D. & Lupis, D. Characterisation of sulphide-bearing waste-rock dumps using electrical resistivity imaging: the case study of the Rio Marina mining district (Elba Island, Italy). Environ Monit Assess 185, 5891–5907 (2013). https://doi.org/10.1007/s10661-012-2993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2993-2

Keywords

Navigation