Skip to main content
Log in

Determination of hydrazine hydrate based on electrochemiluminescence of Ru(bpy) 2+3

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Considering of the basic properties and also the two nitrogen atoms in the structure, hydrazine hydrate was employed to be an amine additive candidate, to build a Ru(bpy) 2+3 /hydrazine electrochemiluminescence (ECL) system, and ECL of Ru(bpy) 2+3 has been employed for the determination of hydrazine hydrate in the paper. The result demonstrated that the logarithmic ECL increasing (ΔECL = ECLafter addition of hydrazine − ECLbefore addition of hydrazine) versus the logarithmic concentration of hydrazine hydrate is linear over a concentration range of 1.0 × 10−9 to 1.0 × 10−5 mol/L, on both glassy carbon and Pt electrodes in a pH 9 phosphate buffer. The hydrazine hydrate detection limit was down to 1.0 × 10−9 mol/L, comparatively lower than other detection methods. To check its applicability, the proposed method was applied to the determination of hydrazine hydrate added into a tap water sample with good reproducibility and stability. All these provide a possibility to develop a novel ECL detection method for hydrazine in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

Reference

  • Brown, K. L., & Gray, S. B. (2007). Electrochemical detection of hydrazine using flow injection analysis. Abstracts of papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25-29, CHED-305.

  • Casella, I. G., Guascito, M. L. R., Salvi, A. M. L., & Desimoni, E. (1997). Catalytic oxidation and flow detection of hydrazine compounds at a Nafion/ruthenium (III) chemically modified electrode. Analytica Chimica Acta, 354, 333–341.

    Article  CAS  Google Scholar 

  • Collins, G. E. (1996). Gas-phase chemical sensing using electrochemiluminescence. Sensors and Actuators B: Chemical, B35, 202–206.

    Article  CAS  Google Scholar 

  • Dong, Y. P. (2010). Electrogenerated chemiluminescence of luminol at a carbon nanotube-perfluorosulfonate polymer (Nafion) modified gold electrode. Journal of Luminescence, 130, 1539–1545.

    Article  CAS  Google Scholar 

  • Guo, L. H., Fu, F. F., & Chen, G. N. (2010). Capillary electrophoresis with electrochemiluminescence detection: fundamental theory, apparatus, and applications. Analytical and Bioanalytical Chemistry, 399, 3323–3343.

    Article  Google Scholar 

  • Haghani, A., Eaton, A., Wan, J., Cha, Y. Y. (2008). Proceedings-water quality technology conference and exposition, hagh1/1-hagh1/17.

  • Hydrazine Hazard Summary (1992, 2000, 2008). United States Environmol/Lental Protection Agency. Hydrazine in Water, ASTM D 1385 – 01.

  • Jiang, Q., Sun, S. G., Håkansson, M., Langel, K., Ylinen, T., Suomi, J., & Kulmala, S. (2006). Electrochemiluminescence and chemiluminescence of a carboxylic acid derivative of Ruthenium (II) tris-(2,2′-bipyridine) chelate synthesized for labeling purposes. Journal of Luminescence, 118, 265–271.

    Article  CAS  Google Scholar 

  • Jie, G. F., Liu, P., Wang, L., & Zhang, S. S. (2010). Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochemistry Communications, 12, 22–26.

    Article  CAS  Google Scholar 

  • Kean, T., Miller, J. H., Skellern, G. G., & Snodin, D. (2008). Acceptance criteria for levels of hydrazine in substances for pharmaceutical use and analytical methods for its determination. European pharmacopeia scientific notes, 2, 23–33.

  • Lide, D. R., (2002). CRC Handbook of chemistry and physics, 83rd edition.

  • Liu, F. Y., Yang, X., & Sun, S. G. (2011). Determination of melamine based on electrochemiluminescence of Ru(bpy) 2+3 at bare and single-wall carbon nanotube modified glassy carbon electrodes. Analyst, 136, 374–378.

    Article  CAS  Google Scholar 

  • Pinter, J. S., Brown, K. L., DeYoung, P. A., & Peaslee, G. F. (2007). Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta, 71, 1219–1225.

    Article  CAS  Google Scholar 

  • Plunkett, S., Parrish, M. E., Shafer, K. H., Shorter, J. H., Nelson, D. D., & Zahniser, M. S. (2002). Hydrazine detection limits in the cigarette smoke matrix using infrared tunable diode laser absorption spectroscopy. Spectrochim Acta A, 58A, 2505–2517.

    CAS  Google Scholar 

  • Preece, N. E., Forrow, S., Ghatineh, S., Langley, G. J., & Timbrell, J. A. (1992). Determination of hydrazine in biofluids by capillary gas chromatography with nitrogen-sensitive or mass spectrometric detection. Journal of Chromatography, 573, 227–234.

    Article  CAS  Google Scholar 

  • Richter, M. M. (2004). Electrochemiluminescence (ECL). Chemical Reviews, 104, 3003–3036.

    Article  CAS  Google Scholar 

  • Su, M., & Liu, S. Q. (2010). Solid-state electrochemiluminescence analysis with coreactant of the immobilized tris(2,2′-bipyridyl) ruthenium. Analytical Biochemistry, 42, 1–12.

    Article  Google Scholar 

  • Sun, S. G., Yang, Y., Liu, F. Y, Fan, J. L., Peng, X. J., Kehr, J., Sun, L. (2009a). Intra- and intermolecular interaction ECL study of novel ruthenium tris-bipyridyl complexes with different amine reductants. Dalton Transactions, 7969–7974.

  • Sun, S. G., Yang, Y., Liu, F. Y., Pang, Y., Fan, J. L., Sun, L., & Peng, X. J. (2009). Study of highly efficient bimetallic ruthenium tris-bipyridyl ecl labels for coreactant system. Analytical Chemistry, 81, 10227–10231.

    Article  CAS  Google Scholar 

  • Sun, S. G., Yang, Y., Liu, F. Y., Fan, J. L., Kehr, J., Sun, L., & Peng, X. J. (2010). ECL performance of ruthenium tris-bipyridyl complexes covalently linked with phenothiazine through different bridge. Dalton Transactions, 39, 8626–8630.

    Article  CAS  Google Scholar 

  • Thomas, L. C., Chamberlin, G. J. (1974). Colorimetric chemical analytical methods, 8th ed., Method I, p195.

  • Zheng, X. W., Zhang, Z. J., Guo, Z. H., & Wang, Q. (2002). Flow-injection electrogenerated chemiluminescence detection of hydrazine based on its in-situ electrochemical modification at a pre-anodized platinum electrode. Analyst, 127, 1375–1379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 21272030), the Fundamental Research Funds for the Central Universities (no. DUT11LK21), the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University, the State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, the Open Project Program of Key Laboratory of ECO-Textiles (Jiangnan University), the Ministry of Education (no. KLET1102), and the China Postdoctoral Science Foundation (no. 20100471434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cyclic voltammetric curves of 0.1 μmol/L hydrazine in 0.1 mol/L phosphate buffer (pH 9) at GC electrode, Scan rate: 150 mV/s. (DOCX 32 kb)

Fig. S2

Dependence of the logarithmic ECL increasing versus the logarithmic concentration of hydrazine hydrate with 0.1 mol/L Ru(bpy) 2+3 in 0.1 mol/L phosphate buffer (pH 9) at Pt electrode. (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Li, W., Li, F. et al. Determination of hydrazine hydrate based on electrochemiluminescence of Ru(bpy) 2+3 . Environ Monit Assess 185, 4153–4158 (2013). https://doi.org/10.1007/s10661-012-2857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2857-9

Keywords

Navigation