Skip to main content
Log in

Sensitive Electrochemical Sensor Modified by Hydroquinone Derivative and Magnesium Oxide Nanoparticles for Simultaneous Determination of Hydroxylamine and Phenol

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Sensitive and selective detection of hydroxylamine (HX) in environmental samples, particularly in the presence of phenol, is of significant importance. Herein, we present an electrochemical sensor based on a carbon paste electrode (CPE) modified with magnesium oxide (MgO) nanoparticles (NPs) and 3,4-dihydroxy benzaldehyde, 2-(Phenyl) hydrazine (DHP), for the simultaneous determination of hydroxylamine and phenol. Employing voltammetric techniques, we investigated the electrocatalytic oxidation of hydroxylamine using the DHP/MgO NPs/CPE electrode. Under optimized conditions (pH = 7), the sensor exhibited a low detection limit of 1.7 μM and a wide linear range of 5.0–650.0 μM for hydroxylamine. The results revealed that the modified electrode significantly enhanced the oxidation activity of HX, resulting in a notable increase in current response compared to the bare electrode. The altered electrode demonstrated satisfactory stability, selectivity, and sensitivity for the detection of hydroxylamine. Furthermore, the developed electrode was successfully utilized for the determination of hydroxylamine in real drinking water samples. The satisfactory recoveries for HX (98.0–102.2%) indicated the high performance and reliable of the proposed method for the assessment of hydroxylamine in water samples. Distinct anodic peaks were observed in the differential pulse voltammetry responses of hydroxylamine and phenol at the surface of the proposed electrode, indicating the feasibility of simultaneous determination of these two compounds. In conclusion, the electrochemical sensor, using MgO NPs and DHP modification, detects hydroxylamine with precision and  enables environmental monitoring and water quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The data and material are available and can be presented in the case of needed.

References

  1. Sadeghi, R.; Karimi-Maleh, H.; Khalilzadeh, M.A.; Beitollahi, H.; Ranjbarha, Z.; Zanousi, M.B.P.: A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor. Environ. Sci. Pollut. Res. 20(9), 6584–6593 (2013). https://doi.org/10.1007/s11356-013-1733-7

    Article  Google Scholar 

  2. Wang, Y.; Wang, L.; Chen, H.; Hu, X.; Ma, S.: Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Appl. Mater. Interfaces 8(28), 18173–18181 (2016). https://doi.org/10.1021/acsami.6b04819

    Article  Google Scholar 

  3. Afkhami, A.; Madrakian, T.; Maleki, A.: Spectrophotometric determination of hydroxylamine and nitrite in mixture in water and biological samples after micelle-mediated extraction. Anal. Biochem. 347(1), 162–164 (2005). https://doi.org/10.1016/j.ab.2005.09.018

    Article  Google Scholar 

  4. Deepa, B.; Balasubramanian, N.; Nagaraja, K.S.: Spectrophotometric determination of hydroxylamine and its derivatives in pharmaceuticals. Chem. Pharm. Bull. 52(12), 1473–1475 (2004)

    Article  Google Scholar 

  5. Frear, D.S.; Burrell, R.C.: Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 27(10), 1664–1665 (1955). https://doi.org/10.1021/ac60106a054

    Article  Google Scholar 

  6. Hu, B.; Tian, X.L.; Shi, W.N.; Zhao, J.Q.; Wu, P.; Mei, S.T.: Spectrophotometric determination of hydroxylamine in biological wastewater treatment processes. Int. J. Environ. Sci. Technol. 15(2), 323–332 (2018). https://doi.org/10.1007/s13762-017-1387-y

    Article  Google Scholar 

  7. Seike, Y.; Fukumori, R.; Senga, Y.; Oka, H.; Fujinaga, K.; Okumura, M.: A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography. Anal. Sci. 20(1), 139–142 (2004)

    Article  Google Scholar 

  8. Korte, W.D.: Determination of hydroxylamine in aqueous solutions of pyridinium aldoximes by high-performance liquid chromatography with UV and fluorometric detection. J. Chromatogr. A 603(1–2), 145–150 (1992). https://doi.org/10.1016/0021-9673(92)85355-W

    Article  Google Scholar 

  9. Christova, R.; Ivanova, M.; Novkirishka, M.: Indirect potentiometric determination of arsenite, sulphite, ascorbic acid, hydrazine and hydroxylamine with an iodide-selective electrode. Anal. Chim. Acta 85(2), 301–307 (1976). https://doi.org/10.1016/S0003-2670(01)84695-X

    Article  Google Scholar 

  10. Canterford, D.R.: Polarographic determination of hydroxylamines: application to analysis of photographic processing solutions. Anal. Chim. Acta 98(2), 205–214 (1978). https://doi.org/10.1016/S0003-2670(01)84047-2

    Article  Google Scholar 

  11. Banaei, M.; Benvidi, A.; Abbasi, Z.; Tezerjani, M.D.; Akbari, A.: Electocatalytic oxidation of hydroxylamine at an imidazole derivative-TiO2 nanoparticle carbon sensor: determination of hydroxylamine and phenol as pollutant agents. Analyt. Bioanalyt. Electrochem. 11(6), 757–773 (2019)

    Google Scholar 

  12. Benvidi, A.; Jahanbani, S.; Akbari, A.; Zare, H.R.: Simultaneous determination of hydrazine and hydroxylamine on a magnetic bar carbon paste electrode modified with reduced graphene oxide/Fe3O4 nanoparticles and a heterogeneous mediator. J. Electroanal. Chem. 758, 68–77 (2015). https://doi.org/10.1016/j.snb.2015.03.010

    Article  Google Scholar 

  13. Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Hamzavi, M.; Parvan, H.: Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int. J. Electrochem. Sci. 9(6), 2955–2965 (2014)

    Article  Google Scholar 

  14. Hajisafari, M.; Nasirizadeh, N.: An electrochemical nanosensor for simultaneous determination of hydroxylamine and nitrite using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode. Ionics 23(6), 1541–1551 (2017). https://doi.org/10.1007/s11581-016-1962-0

    Article  Google Scholar 

  15. Zhang, H.; Zheng, J.: Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode. Talanta 93, 67–71 (2012). https://doi.org/10.1016/j.talanta.2012.01.037

    Article  Google Scholar 

  16. Ensafi, A.A.; Heydari-Bafrooei, E.; Rezaei, B.: Simultaneous detection of hydroxylamine and phenol using p-aminophenol-modified carbon nanotube paste electrode. Chin. J. Catal. 34(9), 1768–1775 (2013). https://doi.org/10.1016/S1872-2067(12)60652-4

    Article  Google Scholar 

  17. Moghaddam, H.M.; Beitollahi, H.; Tajik, S.; Malakootian, M.; Maleh, H.K.: Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environ. Monit. Assess. 186(11), 7431–7441 (2014). https://doi.org/10.1007/s10661-014-3938-8

    Article  Google Scholar 

  18. Nagal, V.; Khan, M.; Masrat, S.; Alam, S.; Ahmad, A.; Alshammari, M.B.; Ahmad, R.: Hexagonal cobalt oxide nanosheet-based enzymeless electrochemical uric acid sensor with improved sensitivity. New J. Chem. 47(9), 4206–4212 (2023)

    Article  Google Scholar 

  19. Revenga-Parra, M.; Lorenzo, E.; Pariente, F.: Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine sensors. Sens. Actuators B Chem. 107(2), 678–687 (2005). https://doi.org/10.1016/j.snb.2004.11.053

    Article  Google Scholar 

  20. Wang, J.; Chen, Q.; Cepria, G.: Electrocatalytic modified electrode for remote monitoring of hydrazines. Talanta 43(8), 1387–1391 (1996). https://doi.org/10.1016/0039-9140(96)01908-X

    Article  Google Scholar 

  21. Li, M.; Guo, W.; Li, H.; Dai, W.; Yang, B.: Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sens. Actuators B 204, 629 (2014)

    Article  Google Scholar 

  22. Gupta, V.K.; Shamsadin-Azad, Z.; Cheraghi, S.; Agarwai, S.; Taher, M.A.; Karimi, F.: Electrocatalytic determination of L-cysteine in the presence of tryptophan using carbon paste electrode modified with MgO nanoparticles and acetylferrocene. Int. J. Electrochem. Sci. 13, 4309–4318 (2018)

    Article  Google Scholar 

  23. Le, Q.H.; Sajadi, S.M.; Karooby, E.; Ghahderijani, M.J.; Koochaki, A.; Shahgholi, M.; Inc, M.: Molecular dynamics method for numerical study of thermal performance of hexacosane PCM in a Cu-nanochannel. Eng. Anal. Boundary Elem. 151, 457–463 (2023)

    Article  MathSciNet  Google Scholar 

  24. Eskandari, V.; Sahbafar, H.; Karooby, E.; Heris, M.H.; Mehmandoust, S.; Razmjoue, D.; Hadi, A.: Surface-enhanced Raman scattering (SERS) filter paper substrates decorated with silver nanoparticles for the detection of molecular vibrations of Acyclovir drug. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 298, 122762 (2023)

    Article  Google Scholar 

  25. Krishnamoorthy, K.; Moon, J.Y.; Hyun, H.B.; Cho, S.K.; Kim, S.J.: Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J. Mater. Chem. 22(47), 24610–24617 (2012). https://doi.org/10.1039/C2JM35087D

    Article  Google Scholar 

  26. Karooby, E.; Granpayeh, N.: Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy. Opt. Eng. 58(6), 065102 (2019). https://doi.org/10.1117/1.OE.58.6.065102

    Article  Google Scholar 

  27. Farasati Far, B.; Naimi-Jamal, M.R.; Jahanbakhshi, M.; Mohammed, H.T.; Altimari, U.S.; Ansari, J.: Poly (3-thienylboronic acid) coated magnetic nanoparticles as a magnetic solid-phase adsorbent for extraction of methamphetamine from urine samples. J. Dispers. Sci. Technol. (2022). https://doi.org/10.1080/01932691.2022.2124169

    Article  Google Scholar 

  28. Sharp, M.; Petersson, M.; Edström, K.: Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J. Electroanal. Chem. Interfacial Electrochem. 95(1), 123–130 (1979). https://doi.org/10.1016/S0022-0728(79)80227-2

    Article  Google Scholar 

  29. Farahani, K.Z.; Benvidi, A.; Rezaeinasab, M.; Abbasi, S.; Abdollahi-Alibeik, M.; Rezaeipoor-Anari, A.; Zarchi, M.A.K.; Abadi, S.S.A.D.M.: Potentiality of PARAFAC approaches for simultaneous determination of N-acetylcysteine and acetaminophen based on the second-order data obtained from differential pulse voltammetry. Talanta 192, 439–447 (2019). https://doi.org/10.1016/j.talanta.2018.08.092

    Article  Google Scholar 

  30. Zheng, L.; Song, J.F.: Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens. Actuators B Chem. 135(2), 650–655 (2009). https://doi.org/10.1016/j.snb.2008.09.035

    Article  Google Scholar 

  31. Ghoreishi, S.M.; Behpour, M.; Golestaneh, M.: Selective voltammetric determination of tartrazine in the presence of red 10B by nanogold-modified carbon paste electrode. J. Chin. Chem. Soc. 60(1), 120–126 (2013). https://doi.org/10.1002/jccs.201200143

    Article  Google Scholar 

  32. Mohammadi, S.Z.; Beitollahi, H.; Mousavi, M.: Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets. Russ. J. Electrochem. 53(4), 374–379 (2017). https://doi.org/10.1134/S1023193517040097

    Article  Google Scholar 

  33. Ardakani, M.M.; Karimi, M.A.; Mirdehghan, S.M.; Zare, M.M.; Mazidi, R.: Electrocatalytic determination of hydroxylamine with alizarin red S as a homogenous mediator on the glassy carbon electrode. Sens. Actuators B Chem. 132(1), 52–59 (2008). https://doi.org/10.1016/j.snb.2008.01.012

    Article  Google Scholar 

  34. Bard, A.J.; Faulkner, L.R.: Fundamentals and applications: electrochemical methods. Electrochem. Methods 2(482), 580–632 (2001)

    Google Scholar 

  35. Premlatha, S.; Chandrasekaran, M.; Bapu, G.R.: Preparation of cobalt-RuO2 nanocomposite modified electrode for highly sensitive and selective determination of hydroxylamine. Sens. Actuators B Chem. 252, 375–384 (2017). https://doi.org/10.1016/j.snb.2017.06.013

    Article  Google Scholar 

  36. Zare, H.R.; Nasirizadeh, N.: Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanal. Int. J. Devoted Fundam. Pract. Aspects Electroanal. 18(5), 507–512 (2006). https://doi.org/10.1002/elan.200503408

    Article  Google Scholar 

  37. Zare, H.R.; Nasirizadeh, N.; Ajamain, H.; Sahragard, A.: Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor. Mater. Sci. Eng. C 31(5), 975–982 (2011). https://doi.org/10.1016/j.msec.2011.02.023

    Article  Google Scholar 

  38. Zare, H.R.; Sobhani, Z.; Mazloum-Ardakani, M.: Electrocatalytic oxidation of hydroxylamine at a rutin multi-wall carbon nanotubes modified glassy carbon electrode: Improvement of the catalytic activity. Sens. Actuators B Chem. 126(2), 641–647 (2007). https://doi.org/10.1016/j.snb.2007.04.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Yazd University Research Council for financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

AB: Project administration; Conceptualization; Methodology. FN: Software, Investigation, Formal analysis, Visualization, Writing—original draft. KZF: Methodology; Writing—Review and Editing; Data Curation; Validation. BFF: Writing—Review and Editing. EK: Validation; Visualization. AA: Methodology; Writing—Review and Editing.

Corresponding author

Correspondence to Ali Benvidi.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvidi, A., Naserpour, F., Zarnousheh Farahani, K. et al. Sensitive Electrochemical Sensor Modified by Hydroquinone Derivative and Magnesium Oxide Nanoparticles for Simultaneous Determination of Hydroxylamine and Phenol. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08444-x

Keywords

Navigation