Skip to main content
Log in

Direct electrothermal atomic spectrometric determination of Ag in aqua regia extracts of soils, sediments, and sewage sludge with matrix modification

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Silver is subject to significant interferences caused by high chloride concentrations in electrothermal atomic absorption spectrometry, thus its direct determination in aqua regia leaches from soils, sediments, and sludges is very difficult, especially when using instrumentation equipped with deuterium-lamp background correction (D2). In this study, the interference of the aqua regia medium was successfully eliminated using Pd–citric acid chemical modifier. This chemical modifier was found to be the most advantageous in comparison with Pd mixture with ascorbic acid, tartaric acid, or citric acid–Li based on its ability to suppress the interference originating from different chloride matrix. Palladium increases the analyte stability; citric acid serves as a reducing reagent, and furthermore, it helps to remove the interfering chlorides by forming HCl, in the drying step of the electrothermal program. In the presence of the modifier, the pyrolysis temperature can be adjusted up to 1,000 °C with no loss of the analyte. The obtained limit of detection and characteristic mass were 5 ng g−1 and 1.7 pg, respectively. The accuracy of the method was verified by means of six different reference samples and by comparing the results of the analysis of real samples with those obtained by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometer. The proposed method was applied to the Ag determination in soils, sediments, and sewage sludge samples from the Pardubice region in Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alloway, B. J. (1990). Heavy metals in soils. New Jersey: Blackie & Son.

    Google Scholar 

  • Aruscavage, P. J., & Campbell, E. Y. (1979). The determination of silver in silicate rocks by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 109(1), 171–175.

    Article  CAS  Google Scholar 

  • Ayrault, S., Priadi, C. R., Evrard, O., Lefevre, I., & Bonte, P. (2010). Silver and thallium historical trends in the Seine River basin. Journal of Environmental Monitoring, 12(11), 2177–2185.

    Article  CAS  Google Scholar 

  • Baron, M. G., Herrin, R. T., & Armstrong, D. E. (2000). The measurement of silver in road salt by electrothermal atomic absorption spectrometry. Analyst, 125(1), 123–126.

    Article  CAS  Google Scholar 

  • Bermejo-Barrera, P., Moreda-Pineiro, J., Moreda-Pineiro, A., & Bermejo-Barrera, A. (1996). Study of chemical modifiers for direct determination of silver in sea water by ETA-AAS with deuterium background correction. Talanta, 43(1), 35–44.

    Article  CAS  Google Scholar 

  • Bermejo-Barrera, P., Moreda-Pinero, J., Moreda-Pinero, A., & Bermejo-Barrera, A. (1998). Usefulness of the chemical modification and the multi-injection technique approaches in the electrothermal atomic absorption spectrometric determination of silver, arsenic, cadmium, chromium, mercury, nickel and lead in sea-water. Journal of Analytical Atomic Spectrometry, 13(8), 777–786.

    Article  CAS  Google Scholar 

  • Bhattacharyya, S. S. (1994). Electrothermal AAS determination of silver in coal fly-ash. Atomic Spectroscopy, 15(6), 242–244.

    CAS  Google Scholar 

  • Blaser, S. A., Scheringer, M., MacLeod, M., & Hungerbuhler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the Total Environment, 390(2–3), 396–409.

    Article  CAS  Google Scholar 

  • Borovec, Z. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177(1–3), 237–250.

    Article  CAS  Google Scholar 

  • Byrne, J. P., Chakrabarti, C. L., Gilchrist, G. F. R., Lamoureux, M. M., & Bertels, P. (1993). Chemical modification by ascorbic-acid and oxalic-acid in graphite-furnace atomic-absorption spectrometry. Analytical Chemistry, 65(9), 1267–1272.

    Article  CAS  Google Scholar 

  • Carroll, J., Miller-Ihli, N. J., Harnly, J. M., O'Haver, T. C., & Littlejohn, D. (1992). Comparison of sodium-chloride and magnesium-chloride interferences in continuum source atomic-absorption spectrometry with wall, platform and probe electrothermal atomization. Journal of Analytical Atomic Spectrometry, 7(3), 533–538.

    Article  CAS  Google Scholar 

  • Castro, M. A., Faulds, K., Smith, W. E., Aller, A. J., & Littlejohn, D. (2004). Characterization of condensed phase species produced during the thermal treatment of metal chlorides on a graphite platform using surface analysis techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(12), 1935–1942.

    Article  Google Scholar 

  • Chaudhry, M. M., Mouillere, D., Ottaway, B. J., Littlejohn, D., & Whitley, J. E. (1992). Investigation of chloride salt decomposition and preatomization interferences in electrothermal atomic-absorption spectrometry. Journal of Analytical Atomic Spectrometry, 7(4), 701–706.

    Article  CAS  Google Scholar 

  • da Silva, J. B. B., Bertilia, M., Giacomelli, O., de Souza, I. G., & Curtius, A. J. (1998). Iridium and rhodium as permanent chemical modifiers for the determination of Ag, As, Bi, Cd, and Sb by electrothermal atomic absorption spectrometry. Microchemical Journal, 60(3), 249–257.

    Article  Google Scholar 

  • da Silva, J. B. B., da Silva, M. A. M., Curtius, A. J., & Welz, B. (1999). Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier. Journal of Analytical Atomic Spectrometry, 14(11), 1737–1742.

    Article  Google Scholar 

  • Daminelli, G., Katskov, D. A., Mofolo, R. M., & Tittareli, P. (1999). Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 1. Alkali halides. Spectrochimica Acta Part B: Atomic Spectroscopy, 54(5), 669–682.

    Article  Google Scholar 

  • De La Calle, I., Cabaleiro, N., Costas, M., Pena, F., Gil, S., Lavilla, I., et al. (2011). Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchemical Journal, 97(2), 93–100.

    Article  Google Scholar 

  • Duran, N., Marcato, P. D., De Souza, G. I. H., & Alves, O. L. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203–208.

    Article  CAS  Google Scholar 

  • Eriksson, J. (2001) Concentration of 61 trace elements in sewage sludge farm manure, mineral fertiliser, precipitation and in soil and crop. Report 5159. Stockholm: Swedish Environmental Protection Agency.

  • Filatova, D. G., Shiryaeva, O. A., Zorov, N. B., & Karpov, Y. A. (2006). Aqueous ammonia as matrix effect suppressor in determination of noble metals by electrothermal atomic absorption spectrometry: A novel approach. Analytica Chimica Acta, 565(2), 234–239.

    Article  CAS  Google Scholar 

  • Hamalainen, L., Smolander, K., & Karttunen, P. (1988). Direct determination of silver in geological reference samples after aqua regia leach by graphite-furnace atomic-absorption spectrometry with matrix modification. Fresenius' Journal of Analytical Chemistry, 330(2), 107–110.

    Article  CAS  Google Scholar 

  • Husakova, L., Cernohorsky, T., Sramkova, J., Hubackova, K., & Dolezalova, I. (2008). Interference-free determination of thallium in aqua regia leaches from rocks, soils and sediments by D-2-ETAAS method using mixed palladium-citric acid-lithium chemical modifier. Analytica Chimica Acta, 614(1), 38–45.

    Article  CAS  Google Scholar 

  • Husakova, L., Urbanova, I., Sramkova, J., Cernohorsky, T., Krejcova, A., Bednarikova, M., et al. (2011). Analytical capabilities of inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) for multi-element analysis of food and beverages. Food Chemistry, 129(3), 1287–1296.

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization). (1995). Soil quality—Extraction of trace elements soluble in aqua regia, ISO 11466 (1st ed.). Geneva: ISO.

    Google Scholar 

  • Jacobson, A. R., McBride, M. B., Baveye, P., & Steenhuis, T. S. (2005). Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment, 345(1–3), 191–205.

    Article  Google Scholar 

  • Kantor, T., & Bezur, L. (1986). Volatilization studies of cadmium compounds by the combined quartz furnace and flame atomic-absorption method-effects of magnesium-chloride and ascorbic-acid additives. Journal of Analytical Atomic Spectrometry, 1(1), 9–17.

    Article  CAS  Google Scholar 

  • Kawasaki, A., Kimura, R., & Arai, S. (1998). Rare earth elements and other trace elements in wastewater treatment sludges. Soil Science and Plant Nutrition, 44(3), 433–441.

    Article  CAS  Google Scholar 

  • L’vov, B. V. (1978). Electrothermal atomization-way toward absolute methods of atomic-absorption analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 33(5), 153–159.

    Article  Google Scholar 

  • Li, Z. X., Zhou, L. P., & Tan, F. (2007). Influence of sample pre-treatment on the determination of trace silver and cadmium in geological and environmental samples by quadrupole inductively coupled plasma mass spectrometry. Microchimica Acta, 156(3), 263–269.

    Google Scholar 

  • Lopez-Garcia, I., Campillo, N., Arnau-Jerez, I., & Hernandez-Cordoba, M. (2003). Slurry sampling for the determination of silver and gold in soils and sediments using electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(9), 1715–1721.

    Article  Google Scholar 

  • Lottermoser, B. G. (1995). Noble metals in municipal sewage sludges of Southeastern Australia. Ambio, 24(6), 354–357.

    Google Scholar 

  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353.

    Article  CAS  Google Scholar 

  • Panyala, N. R., Pena-Mendez, E. M., & Havel, J. (2008). Silver or silver nanoparticles: A hazardous threat to the environment and human health? Journal of Applied Biomedicine, 6(3), 117–129.

    CAS  Google Scholar 

  • Qiao, H., Mahmood, T. M., & Jackson, K. W. (1993). Mechanism of the action of palladium in reducing chloride interference in electrothermal atomic-absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(12), 1495–1503.

    Article  Google Scholar 

  • Sen Gupta, J. G., & Bouvier, J. L. (1994). Direct determination of traces of Ag, Cd, Pb, Bi, Cr, Mn, Co, Ni, Li, Be, Cu and Sb in environmental waters and geological materials by simultaneous multi-element graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. Talanta, 42(2), 269–281.

    Article  Google Scholar 

  • Sindern, S., Lima, R. F. S., Schwarzbauer, J., & Petta, R. A. (2007). Anthropogenic heavy metal signatures for the fast growing urban area of Natal (NE-Brazil). Environmental Geology, 52(4), 731–737.

    Article  CAS  Google Scholar 

  • Slaveykova, V. I., & Tsalev, D. L. (1992). Comparative-study of ruthenium, rhodium and palladium as chemical modifiers in graphite-furnace atomic-absorption spectrometry. Spectroscopy Letters, 25(2), 221–238.

    Article  Google Scholar 

  • Slavin, W., Manning, D. C., & Carnick, G. R. (1981). The stabilized temperature platform furnace. Atomic Spectroscopy, 2(5), 137–145.

    Google Scholar 

  • Sramkova, J., Kotrly, S., & Peknicova, M. (1999). Determination of silver in layered monocrystals of thermoelectric tellurides by graphite furnace atomic absorption spectrometry. Analusis, 27(10), 839–846.

    Article  CAS  Google Scholar 

  • Tsalev, D. L., Slaveykova, V. I., & Mandjukov, P. B. (1990). Chemical modification in graphite-furnace atomic-absorption spectrometry. Spectrochimica Acta Reviews, 13(3), 225–274.

    CAS  Google Scholar 

  • Vaisanen, A., Suontamo, R., Silvonen, J., & Rintala, J. (2002). Ultrasound-assisted extraction in the determination of arsenic, cadmium, copper, lead, and silver in contaminated soil samples by inductively coupled plasma atomic emission spectrometry. Analytical and Bioanalytical Chemistry, 373(1–2), 93–97.

    Google Scholar 

  • Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., et al. (2009). Nano-silver—A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109–138.

    Article  CAS  Google Scholar 

  • Zemberyova, M., Bartekova, J., & Hagarova, I. (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70(5), 973–978.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The support by the Ministry of Education, Youth and Sports of the Czech Republic (project no. 0021627502) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Husáková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanová, I., Husáková, L. & Šrámková, J. Direct electrothermal atomic spectrometric determination of Ag in aqua regia extracts of soils, sediments, and sewage sludge with matrix modification. Environ Monit Assess 185, 3327–3337 (2013). https://doi.org/10.1007/s10661-012-2793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2793-8

Keywords

Navigation