Skip to main content
Log in

Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Airborne bacteria emissions from oxidation ditch with rotating aeration brushes were investigated in a municipal wastewater treatment plant in Beijing, China. Microbial samples were collected at different distances from the rotating brushes, different heights above the water surface, and different operation state over a 3-month period (April, May, and June) in order to estimate the seasonal variation and site-related distribution characteristics of the microorganisms present. The concentration of bacterial aerosol was analyzed by culture methods, while their dominant species, genetic structure and diversity were assayed using bio-molecular tools. Results showed that total microbial concentrations were highest in June and lowest in April. The mechanical rotation caused remarkable variation in concentration and diversity of culturable airborne bacteria before and after the rotating brushes. The highest concentration was observed near the rotating brushes (931 ± 129–3,952 ± 730 CFU/m3), with concentration decreasing as distance and height increased. Bacterial community polymerase chain reaction and denaturing gradient gel electrophoresis indicated that diversity decreased gradually with increasing height above the water surface but remained relatively constant at the same height. All dominant bacteria identified by DNA sequence analysis belonged to Firmicutes. Pathogenic species such as Moraxella nonliquefaciens and Flavobacterium odoratum were isolated from the bioaerosols. Due to the serious health risks involved, exposure of sewage workers to airborne microorganisms caused by brush aerators should be monitored and controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, H. R., Maienlis, G., & White, L. (2006). Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment, 40, 7924–7939.

    Article  CAS  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Brandi, G., Sisti, M., & Amagliani, G. (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology, 88, 845–852.

    Article  CAS  Google Scholar 

  • Brenner, K. P., Scarpion, P. V., & Clark, S. (1988). Animal viruses, coliphages, and bacteria in aerosols and wastewater at a spry irrigation site. Applied and Environmental Microbiology, 54, 409–415.

    CAS  Google Scholar 

  • Chen, X. C., Liang, L., & Lin, W. (2009). Analysis on the Flavobacterium odoratum bacteriuria from 11 urine samples (in Chinese). Journal of practical medical techniques, 16, 691–692.

    Google Scholar 

  • Coudron, P. E., Payne, J. M., & Markowitz, S. M. (1991). Pneumonia and empyema infection associated with a bacillus species that resembles B. alvei. Journal of Clinical Microbiology, 29, 1777–1779.

    CAS  Google Scholar 

  • Dabert, P., Sialve, B., Delgenès, J. P., Moletta, R., & Godon, J. J. (2001). Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Applied and Environmental Microbiology, 55, 500–509.

    CAS  Google Scholar 

  • Davis, J. M., Whipp, M. J., Ashhurst-Smith, C., DeBoer, J. C., & Peel, M. M. (2004). Mucoid nitrate-negative Moraxella nonliquefaciens from three patients with chronic lung disease. Journal of Clinical Microbiology, 42, 3888–3890.

    Article  Google Scholar 

  • Fedorak, P. M., & Westlake, D. W. S. (1978). Effect of sunlight on bacterial survival in transparent air samplers. Canadian Journal of Microbiology, 24, 618–619.

    Article  CAS  Google Scholar 

  • Haas, D., Unteregger, M., Habib, J., Galler, H., Marth, E., & Reinthaler, F. F. (2010). Exposure to bioaerosol from sewage systems. Water, Air, & Soil Pollution, 207, 49–56.

    Article  CAS  Google Scholar 

  • Hoshino, T., Terahara, T., Yamada, K., Okuda, H., Suzuki, I., Tsuneda, S., et al. (2006). Long-term monitoring of the succession of a microbial community in activated sludge from a circulation flush toilet as a closed system. FEMS Microbiology Ecology, 55, 457–470.

    Article  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Korzeniewska, E., Filipkowska, Z., Gotkowska-Plachta, A., Janczukowicz, W., Dixon, B., & Czulowsk, M. (2009). Determination of emitted airborne microorganisms from a BIO-PAK wastewater treatment plant. Water Research, 43, 2841–2851.

    Article  CAS  Google Scholar 

  • Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung disease. Journal of Aerosol Science, 25, 1371–1404.

    Article  CAS  Google Scholar 

  • Laukeland, H., Bergh, K., & Bevanger, L. (2002). Posttrabeculectomy endophthalmitis caused by Moraxella nonliquefaciens. Journal of Clinical Microbiology, 40, 2668–2770.

    Google Scholar 

  • Lawless, P. A. (2000). Improvements in the positive-hole correction for multijet aerosol impactors collecting viable microorganisms. Journal of Aerosol Science, 31(Supplement 1), 743–744.

    Article  Google Scholar 

  • Li, L., Gao, M., & Liu, J. X. (2011). Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process. Process Biochemistry, 46, 910–915.

    Article  CAS  Google Scholar 

  • Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. American Industrial Hygiene Association Journal, 50, 561–568.

    Article  CAS  Google Scholar 

  • Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 39, 2687–3695.

    Article  Google Scholar 

  • Melbostad, E., Eduard, W., Skogstad, A., Sandven, P., Lassen, J., Sostrand, P., et al. (1994). Exposure to bacterial aerosols and work-related symptoms in sewage workers. American Journal of Industrial Medicine, 25, 59–63.

    Article  CAS  Google Scholar 

  • Monteil, H., & Harf-Monteil, C. (1997). Aerobic gram-negative bacilli: newer nosocomial pathogens. International Journal of Antimicrobial Agents, 8, 217–231.

    Article  CAS  Google Scholar 

  • Osaka, T., Yoshie, S., Tsuneda, S., Hirata, A., Iwami, N., & Inamori, Y. (2006). Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microbial Ecology, 52, 253–266.

    Article  CAS  Google Scholar 

  • Palela, M., Ifrim, G., & Bahrim, G. (2008). Microbiological and biochemical characterisation of dairy and brewery wastewater microbiota. The Annals of the University Dunarea de Jos of Galati Fascicle VI-Food Technology New Series, II(XXXI), 23–30.

    Google Scholar 

  • Palmer, C. J., Bonilla, G. F., Roll, B., Paszko-Kolva, C., Sangermano, L. R., & Fujioka, R. H. (1995). Detection of Legionella species in reclaimed water and air with the environAmp Legionella PCR kit and direct fluorescent antibody staining. Applied and Environmental Microbiology, 61, 407–412.

    CAS  Google Scholar 

  • Parsons, S., Smith, S. G., Martins, Q., Horsnell, W. G., Gous, T. A., Streicher, E. M., et al. (2008). Pulmonary infection due to the dassie bacillus (Mycobacterium tuberculosis complex sp.) in a free-living dassie (rock hyrax—Procavia capensis) from South Africa. Tuberculosis, 88, 80–83.

    Article  Google Scholar 

  • Patentalakis, N., Pantidou, A., & Kalogerakis, N. (2008). Determination of enterobacteria in air and wastewater samples from a wastewater treatment plant by epi-fluorescence microscopy. Water, Air, & Soil Pollution: Focus, 8, 107–115.

    Article  CAS  Google Scholar 

  • Rafiq, I., Parthasarathy, H., Tremlett, C., Freeman, L. J., & Mullin, M. (2011). Infective endocarditis caused by Moraxella nonliquefaciens in a percutaneous aortic valve replacement. Cardiovascular Revascularization Medicine, 12, 184–186.

    Article  Google Scholar 

  • Rosett, W., Heck, D. M., & Hodges, G. R. (1976). Pneumonitis and pulmonary abscess associated with Moraxella nonliquefaciens. Chest, 70, 664–665.

    Article  CAS  Google Scholar 

  • Rylander, R. (1999). Health effects among workers in sewage treatment plants. Occupational and Environmental Medicine, 56, 354–357.

    Article  CAS  Google Scholar 

  • Sánchez-Monedero, M. A., Aguilar, M. I., Fenoll, R., & Roig, A. (2008). Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42, 3739–3744.

    Article  Google Scholar 

  • Sawyer, B., Rao, K. C., O’Brien, P., Elenbogen, G., Zenz, D. R., & Lue-Hing, C. (1996). Changes in bacterial aerosols with height above aeration tanks. Journal of Environmental Engineering, 5, 368–373.

    Article  Google Scholar 

  • Shokrollahzadeh, S., Azizmohseni, F., Golmohammad, F., Shokouhi, H., & Khademhaghighat, F. (2008). Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresource Technology, 99, 6127–6133.

    Article  CAS  Google Scholar 

  • Stellacci, P., Liberti, L., Notarnicola, M., & Haas, C. N. (2010). Hygienic sustainability of site location of wastewater treatment plants: a case study. II. Estimating airborne biological hazard. Desalination, 253, 106–111.

    Article  CAS  Google Scholar 

  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6, S737–S746.

    Article  Google Scholar 

  • Thorn, J., & Kerekes, E. (2001). Health effects among employees in sewage treatment plants: a literature survey. American Journal of Industrial Medicine, 40, 170–179.

    Article  CAS  Google Scholar 

  • Tønjum, T., Marrs, C. F., Rozsa, F., & Bøvre, K. (1991). The type 4 pilin of Moraxella nonliquefaciens exhibits unique similarities with the pilins of Neisseria gonorrhoeae and Dichelobacter (Bacteroides) nodosus. Journal of General Microbiology, 137, 2483–2490.

    Article  Google Scholar 

  • Tsai, M. Y., & Liu, H. M. (2009). Exposure to cultivable airborne bioaerosols during noodle manufacturing in central Taiwan. Science of the Total Environment, 47, 1536–1546.

    Article  Google Scholar 

  • Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernadet, J. F., Vandamme, P., et al. (1996). Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus Myroides as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. International Journal of Systematic Bacteriology, 46, 926–932.

    Article  Google Scholar 

  • Zulkifly, A. H., Roslan, D. D., Hamid, A. A. A., Hamdan, S., & Huyop, F. (2010). Biodegradation of low concentration of monochloroacetic acid-degrading Bacillus sp. TW1 isolated from terengganu water treatment and distribution plant. Journal of Applied Sciences, 10, 2940–2944.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Watts for the English revision of the manuscript. This research was financially supported by the National Natural Science Foundation of China (no. 50921064 and 50978249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 48.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Han, Y. & Liu, J. Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools. Environ Monit Assess 185, 603–613 (2013). https://doi.org/10.1007/s10661-012-2578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2578-0

Keywords

Navigation