Skip to main content
Log in

Modeling the plant–soil interaction in presence of heavy metal pollution and acidity variations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.

    Google Scholar 

  • Aggarwal, H., & Goyal, D. (2007). Phytoremediation of some heavy metals by agronomic crops. In D. Sarkar, R. Datta, & R. Hannigan (Eds.), Developments in environmental science, Volume 5. Amsterdam: Elsevier.

    Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. Glasgow: Blackie Academic and Professional.

    Book  Google Scholar 

  • Appel, C., & Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31(2), 581–589.

    Article  CAS  Google Scholar 

  • Athar, R., & Ahmad, M. (2002). Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water, Air, and Soil Pollution, 138(1–4), 165–180.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • Brun, L. A., Maillet, J., Hinsinger, P., & Pepin, M. (2001). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constitutes. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge: Noyes Data Corp.

    Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36(5), 1429–1433.

    Article  CAS  Google Scholar 

  • Cieśliński, G., Neilsen, G. H., & Hogue, E. J. (1996). Effect of soil cadmium application and pH on growth and cadmium accumulation in roots, leaves and fruit of strawberry plants (Fragaria × ananassa Duch.). Plant and Soil, 180(2), 267–276.

    Article  Google Scholar 

  • Dan, T., Hale, B., Johnson, D., Conard, B., Stiebel, B., & Veska, E. (2008). Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Canadian Journal of Soil Science, 88, 389–398.

    Article  CAS  Google Scholar 

  • Deleo, G., Delfuria, L., & Gatto, M. (1993). The interaction between soil acidity and forest dynamics: A simple model exhibiting catastrophic behaviour. Theoretical Population Biology, 43(1), 31–51.

    Article  Google Scholar 

  • Doelman, P., & Haanstra, L. (1984). Short-term and longterm effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil, 79(33), 317–327.

    Article  CAS  Google Scholar 

  • Esteban, E., Moreno, E., Peñalosa, J., Cabrero, J. I., Millán, R., & Zornoza, P. (2008). Short and long-term uptake of Hg in white lupin plants: Kinetics and stress indicators. Environmental and Experimental Botany, 62(3), 316–322.

    Article  CAS  Google Scholar 

  • Friesl, W., Friedl, J., Platzer, K., Horak, O., & Gerzabek, M. H. (2006). Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environmental Pollution, 144, 40–50.

    Article  CAS  Google Scholar 

  • Garbisu, C., Hernández-Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17(3), 173–188.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30(10–11), 1389–1414.

    Article  CAS  Google Scholar 

  • Gincchio, R., Rodriguez, P. H., Badilla-Ohlbaum, R., Allen, H. E., & Lagos, G. E. (2002). Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environmental Toxicology and Chemistry, 21, 1736–1744.

    Article  Google Scholar 

  • Guala, S. D., Vega, F. A., & Covelo, E. F. (2009). Modification of a soil-vegetation nonlinear interaction model with acid deposition for simplified experimental applicability. Ecological Modelling, 220, 2137–2141.

    Article  CAS  Google Scholar 

  • Guala, S. D., Vega, F. A., & Covelo, E. F. (2010a). Dynamical of heavy metals in plant-soil interaction. Ecological Modelling, 221, 1148–1152.

    Article  CAS  Google Scholar 

  • Guala, S. D., Vega, F. A., & Covelo, E. F. (2010b). Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model. Environmental Pollution, 158, 2659–2663.

    Article  CAS  Google Scholar 

  • Guala, S.D., Vega, F.A., Covelo, E.F. (2011). Development of a model to select plants with optimum metal phytoextraction potential, submitted to Environmental Science and Pollution Research.

  • Hamon, R. E., Holm, P. E., Lorenz, S. E., McGrath, S. P., & Christensen, T. H. (1999). Metal uptake by plants from sludge-amended soils: Caution is required in the plateau interpretation. Plant and Soil, 216(1–2), 53–64.

    Article  CAS  Google Scholar 

  • Heidari, R., Khayanni, M., & Farboodnia, T. (2005). Effect of ph and EDTA on Pb accumulation in Zea mays seedlings. Journal of Agronomy, 4(1), 49–54.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kukier, U., Peters, C. A., Chaney, R. L., Scott Angle, J., & Roseberg, R. J. (2004). The effect of pH on metal accumulation in two Alyssum species. Journal of Environmental Quality, 33(6), 2090–2102.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lindsay, W. (1979). Chemical equilibria in soils. New York: Wiley.

    Google Scholar 

  • Lombi, E., Scheckel, K. G., Pallon, J., Carey, A. M., Zhu, Y. G., & Meharg, A. A. (1999). Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist, 184(1), 193–201.

    Article  Google Scholar 

  • MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65–84.

    Article  CAS  Google Scholar 

  • McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. Brooks (Ed.), Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–287). New York: CAB International.

    Google Scholar 

  • Moreira, C. S., Casagrande, J. C., Alleoni, L. R. F., De Camargo, O. A., & Berton, R. S. (2008). Nickel adsorption in two Oxisols and an Alfisol as affected by pH, nature of the electrolyte, and ionic strength of soil solution. Journal of Soils and Sediments, 8(6), 442–451.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Sanchez-Marín, A., Hernández, T., & García, C. (2006). Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils. Environmental Management, 37(5), 626–633.

    Article  Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 48(4), 573–592.

    Article  CAS  Google Scholar 

  • Panuccio, M. R., Sorgonà, A., Rizzo, M., & Cacco, G. (2009). Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. Journal of Environmental Management, 90(1), 364–374.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G. M., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77.

    Article  CAS  Google Scholar 

  • Poulik, Z. (1997). The danger of cumulation of nickel in cereals on contaminated soil. Agriculture, Ecosystems and Environment, 63(1), 25–29.

    Article  CAS  Google Scholar 

  • Reed, R. L., Sanderson, M. A., Allen, V. G., & Zartman, R. E. (2002). Cadmium application and pH effects on growth and cadmium accumulation in switchgrass. Communications in Soil Science and Plant Analysis, 33(7 & 8), 1187–1203.

    Article  CAS  Google Scholar 

  • Ryser, P., & Sauder, W. R. (2006). Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environmental Pollution, 140(1), 52–61.

    Article  CAS  Google Scholar 

  • Speir, T. W., Kettles, H. A., Parshotam, A., Searle, P. L., & Vlaar, L. N. C. (1995). A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties. Soil Biology and Biochemistry, 27, 801–810.

    Article  CAS  Google Scholar 

  • Strawn, D. G., & Sparks, D. L. (1999). Sorption kinetics of trace elements in soils and soil materials. In H. M. Selim & I. K. Iskandar (Eds.), The Fate and Transport of Trace Metals in the Vadose Zone. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Ulrich, B., & Pankrath, J. (1983). Effects of accumulation of air pollutants in forest ecosystems. Dordrecht: Reidel.

    Book  Google Scholar 

  • Ulrich, B., Mayer, R., & Khanna, P. K. (1980). Chemical changes due to acid precipitation in a loess derived soil in Central Europe. Soil Science, 130(4), 193–199.

    Article  CAS  Google Scholar 

  • Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13, 195–206.

    Article  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.

    Article  CAS  Google Scholar 

  • Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Chromium reduction, plant growth-promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Current Microbiology, 54, 237–243.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Xunta de Galicia in partnership with the University of Vigo through a Parga Pondal and Ángeles Alvariño contract awarded to E.F. Covelo and F.A. Vega, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma F. Covelo.

Additional information

This study was supported by the Xunta de Galicia in partnership with the University of Vigo through a Parga Pondal and Ángeles Alvariño contract awarded to E.F. Covelo and F.A. Vega, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guala, S., Vega, F.A. & Covelo, E.F. Modeling the plant–soil interaction in presence of heavy metal pollution and acidity variations. Environ Monit Assess 185, 73–80 (2013). https://doi.org/10.1007/s10661-012-2534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2534-z

Keywords

Navigation