Skip to main content
Log in

Modelling the Balance of Metals in the Amended Soil for the Case of ‘Atmosphere–Plant–Soil’ System

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Changing the concepts of economic development and introducing new amendments can hardly decrease the accumulation in the soil of such pollutants as metals, remaining there for a long time. The predictive models for describing the balance of metals in the soil, which are based on the ‘atmosphere–plant–soil’ system and reflect the complicated physical–chemical nature of the metals’ migration, expressed by coefficients obtained in long-term observations in natural conditions, allow for evaluating long-term concentration of metals in the soil. The model BALANS evaluates self-purification of soil, taking into account the uptake of metals of aerogenic origin by the soil together with amendments, their physical–chemical migration and the type of microrelief determining its intensity as well as the absorbed biomass of plants and the removal of metals with crops. In this model, the half-period of metals’ washing out from the soil, found for the microrelief characteristic of low places, exceeds 200 years for Ni, Cr and Pb and makes 90 and 150 years for Zn and Cu, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper no. 56. FAO, Rome.

  2. Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A., Šerevičienė, V., & Zuokaitė, E. (2014). Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environmental Science and Pollution Research, 21(1), 299–313.

    Article  Google Scholar 

  3. Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016). The sustainable role of the tree in environmental protection technologies. Springer. Monograph. 300 p.

  4. Baltrėnaitė, E., & Butkus, D. (2007). Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leady trees. Journal of Environmental Engineering and Landscape Management, 4, 200–207.

    Google Scholar 

  5. Baltrėnaitė, E., Butkus, D., & Booth, C. A. (2010). Comparison of three tree-ring sampling methods for trace metal analysis. Journal of Environmental Engineering and Landscape Management, 18(3), 170–178.

    Article  Google Scholar 

  6. Baltrėnas, P., Baltrėnaitė, E., & Spudulis, E. (2015). Biochar from pine and birch morphology and pore structure change by treatment in biofilter. Water, Air, and Soil Pollution, 226(69), 1–14.

    Google Scholar 

  7. Boersma, L., McFarlane, C., & McCoy, E. L. (1988). Uptake of organic chemicals by plants: a theoretical model. Soil Science, 146, 403–417.

    Article  CAS  Google Scholar 

  8. Boersma, L., McFarlane, C., McCoy, E.L. (1988b). Model of couple transport of water and solutes in plants. Spec. Report 818. Agric. Exp. Sta., Oregon State University, Corvallis, Oregon, USA, p. 109.

  9. Boersma, L., Lindstrom, F. T., & Childs, S. W. (1991). Model for steady state coupled transport in xylem and phloem. Agronomy Journal, 83, 401–415.

    Article  Google Scholar 

  10. DeLuca, T. H., MacKenzie, M. D., Gundale, M. J., & Holben, W. E. (2006). Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Science Society of America Journal, 70, 448–453.

    Article  CAS  Google Scholar 

  11. EBC. (2012). European Biochar Certificate—guidelines for a sustainable production of biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/en/download. Version 4.7 of 18th October 2013, Accessed: 2013 12 06.

  12. Ecogeochemistry of the western Siberia. Heavy metals and radionuclides. (1996). Joint Institute of Geology, Geophysics and Minerology at Russian Academy of Science, Siberia division. Poliakov, G. V. (ed.). Scientific publish centre of The Joint Institute of Geology, Geophysics and Minerology at Russian Academy of Science, Siberia division. 248 p. (in Russian).

  13. Glaser, B. (2007). Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society, B: Biological Sciences, 362, 187–196.

    Article  CAS  Google Scholar 

  14. Glaser, B., Parr, M., Braun, C., & Kopolo, G. (2009). Biochar is carbon negative. Nature Geoscience, 2, 2. doi:10.1038/ngeo395.

    Article  CAS  Google Scholar 

  15. Glazovskaia, M. A. (1988). Geochemistry of natural and technogenic landscapes in USSR. Moscow: high school. 328 p. (in Russian).

  16. Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). Heavy metal concentrations in plants and different harvestable parts: a soil–plant equilibrium model. Environmental Pollution, 158, 2659–2663.

    Article  CAS  Google Scholar 

  17. Hung, H., & Mackay, D. A. (1997). A novel and simple model of uptake of organic chemical by vegetation from air and soil. Chemosphere, 35, 959–977.

    Article  CAS  Google Scholar 

  18. Jimura, K., Ito, H., Chino, M., Morishita, Т., Hirata, H. (1977). Behavior of contaminant heavy metals in soil-plant system, in: Proc. Inst. Sem. SEFMIA. Tokyo. 357 p.

  19. Joseph, S., Peacocke, C., Lehmann, J., Munroe, P. (2009). Developing a biochar classification and test methods. In: J. Lehmann, S. Joseph (eds.) Biochar for environmental management: science and technology, Earthscan. 416 p.

  20. Kabata-Pendias, A., Pendias, KH. (1989). Microelements in soil and plants. Moscow: World. 439 p. (in Russian).

  21. Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press Taylor and Francis. 520 p.

  22. Kaigorodov, R. V., & Ruk, V. (2005). Balanse of zinc and copper in several agroecosystems of Low Sacsony (Germany). Biology, 6, 159–160 (in Russian).

    Google Scholar 

  23. Komkienė, J., & Baltrėnaitė, E. (2015). Biochar as adsorbent for removal of heavy metal ions (Cadmium(II), Copper(II), Lead(II), Zinc(II)) from aqueous phase. International Journal of Environmental Science and Technology. doi:10.1007/s13762-015-0873-3.

    Google Scholar 

  24. Krastinytė, V., Baltrėnaitė, E., & Lietuvninkas, A. (2013). Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery. Environmental Technology, 34(6), 757–763.

    Article  Google Scholar 

  25. Kváčová, M., Ash, C., Borůvka, L., Pavlů, L., Nikodem, A., Němeček, K., Tejnecký, V., & Drábek, O. (2015). Contents of potentially toxic elements in forest soils of the Jizera Mountains Region. Environmental Modeling and Assessment, 20, 183–195. doi:10.1007/s10666-014-9425-3.

    Article  Google Scholar 

  26. Landner, L., & Reuther, R. (2004). Metals in society and in the environment: a critical review of current knowledge on fluxes, speciation, bioavailability and risk for adverse effects of copper, chromium, nickel and zinc. Dordrecht: Kluwer Academic Publishers. 406 p.

    Google Scholar 

  27. Lehmann, J., & Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics. In N. Uphoff (Ed.), Biological approaches to sustainable soil systems (pp. 517–531). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  28. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Peterson, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    Article  CAS  Google Scholar 

  29. Lietuvninkas, A. (2002). Anthropogenic geochemical anomalies and environmental protection. Tomsk: Publishing House of Scientific and Technological Literature. 290 p. (in Russian).

    Google Scholar 

  30. Lietuvninkas, A. (2012). Environmental geochemistry. Technika, Vilnius, 312 pp. (in Lithuanian).

  31. Lindstrom, F. T., Boersma, L., & McFarlane, C. (1991). Mathematical model of plant uptake and translocation of organic chemicals: development of the model. Journal of Environmental Quality, 20, 129–136.

    Article  CAS  Google Scholar 

  32. Malinina, M. S. (2012). Variation of chemical elements distribution in albeluvisols in a long-term application of sewage sludge. Soil Management, 12, 1269–1277 (in Russian).

    Google Scholar 

  33. Marris, E. (2006). Putting the carbon back: black is the new green. Nature, 442, 624–626.

    Article  CAS  Google Scholar 

  34. Moreno, J. L., Sanchez-Marin, A., Hernandez, T., & Garcia, C. (2006). Effect of cadmium on microbial activity and ryegrass crop in two semiarid soils. Environmental Management, 37(5), 626–633.

    Article  Google Scholar 

  35. Noguera, D., Rondon, M., Laossi, K. R., Hoyos, V., Lavelle, P., de Carvalho, M. H. C., & Barot, S. (2010). Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 42, 1017–1027.

    Article  CAS  Google Scholar 

  36. Ouyang, Y. (2002). Phytoremediation: modelling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. Journal of Hydrology, 266, 66–82.

    Article  CAS  Google Scholar 

  37. Perelman, A. I. (1972). Geochemistry of elements in the zone of hypergenesis. Moscow: Nedra. 288 p.

    Google Scholar 

  38. Plekhanova, I. O. (2009). Self-cleaning of cultivated Albeluvisols in east part of Moscow under multielemental contamination caused by sewage sludge application. Soil Management, 6, 719–725 (in Russian).

    Google Scholar 

  39. Pokatilov, I. U. G. (1993). Biogeochemistry of biosphere and medical-biological problem. Novosibirsk: Publishing Company of Siberia. 168 p. (in Russian).

    Google Scholar 

  40. Poulik, Z. (1997). Soil and human health: a review. European Journal of Soil Science, 48(4), 573–561.

    Article  Google Scholar 

  41. Pundytė, N., Baltrėnaitė, E., Pereira, P., & Paliulis, D. (2011). Variation of metal uptake by Pinus sylvestris L. Journal of Environmental Engineering and Landscape Management, 19(1), 34–43.

    Article  Google Scholar 

  42. Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., & Clothier, B. E. (2000). Natural and induced accumulation in poplar and willow: implications for phytoremediation. Plant and Soil, 227, 301–306.

    Article  CAS  Google Scholar 

  43. Saet, Е., Revich, B. А., Janin, Е. P., & Smirnova, R. S. (1990). Environmental geochemistry. Мoscow: Nedra. 335 p.

    Google Scholar 

  44. Saleh, M. E., Mahmoud, A. H., & Rashad, M. (2012). Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: a preliminary study. Advances in Environmental Botany, 6(7), 2170–2176.

    CAS  Google Scholar 

  45. Sistani, K. R., & Novak, J. M. (2009). Trace metal accumulation, movement, and remediation in soils receiving animal manure. In M. N. V. Prasad, K. S. Sajwan, & R. Naidu (Eds.), Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation (pp. 773–793). Moscow: Fizmatlit (in Russian).

    Google Scholar 

  46. Sombroek, W., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., & Lehmann, J. (2003). Amazonian dark earths as carbon stores and sinks. In J. Lehmann, D. C. Kern, B. Glaser, & W. I. Woods (Eds.), Amazonian dark earths: Origin, properties, management. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  47. Trapp, S., & McFarlane, J. C. (1995). Plant contamination: modelling and simulation of organic chemical processes. Boca Raton: Lewis Publishers.

    Google Scholar 

  48. Wong, C. S. C., & Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of the Total Environment, 319, 185–195.

    Article  CAS  Google Scholar 

  49. Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B. J., Huang, Q., Lei, M., Sun, G., & Baltrėnaitė, E. (2015). Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environmental Science and Pollution Research, 22(14), 11097–11108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was partly funded by the Academy of Sciences of Lithuania, which granted Edita Baltrėnaitė a young researcher scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edita Baltrėnaitė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltrėnaitė, E., Lietuvninkas, A. & Baltrėnas, P. Modelling the Balance of Metals in the Amended Soil for the Case of ‘Atmosphere–Plant–Soil’ System. Environ Model Assess 21, 577–590 (2016). https://doi.org/10.1007/s10666-016-9505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9505-7

Keywords

Navigation