Skip to main content

Advertisement

Log in

Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amatya, G., Chang, S. X., Beare, M. H., & Mead, D. J. (2002). Soil properties under a Pinus radiata–ryegrass silvopastoral system in New Zealand. Part II. C and N of soil microbial biomass, and soil N dynamics. Agroforestry Systems, 54, 149–160.

    Article  Google Scholar 

  • Banerjee, B., Aggarwal, P. K., Pathak, H., Singh, A. K., & Chaudhary, A. (2006). Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice–wheat systems. Environmental Monitoring and Assessment, 119, 173–189.

    Article  CAS  Google Scholar 

  • Bauhus, J., Pare, D., & Cote, L. (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology & Biochemistry, 30, 1077–1089.

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Sumner (Eds.), Methods of soil analysis. Part 3. Chemical methods (pp. 1085–1122). Wisconsin: Soil Science Society of America Book Series, Number 5.

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Cabrera, M. L., & Beare, M. H. (1993). Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal, 57, 1007–1012.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1992). Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777–783.

    Article  Google Scholar 

  • Chang, S. X., & Trofymow, J. A. (1996). Microbial respiration and biomass (substrate-induced respiration) in soils of old-growth and regenerating forests on northern Vancouver Island, British Columbia. Biology and Fertility of Soils, 23, 145–152.

    Article  CAS  Google Scholar 

  • Cote, L., Brown, S., Pare, D., Fyles, J., & Bauhus, J. (2000). Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biology & Biochemistry, 32, 1079–1090.

    Article  CAS  Google Scholar 

  • Fontaine, S., Bardoux, G., Abbadie, L., & Mariotti, A. (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314–320.

    Article  Google Scholar 

  • Gartzia-Bengoetxea, N., González-Arias, A., Merino, A., & de Arano, I. M. (2009). Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biology & Biochemistry, 41, 1674–1683.

    Article  CAS  Google Scholar 

  • Gupta, N., Kukal, S. S., Bawa, S. S., & Dhaliwal, G. S. (2009). Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agroforestry Systems, 76, 27–35.

    Article  Google Scholar 

  • Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76, 1–10.

    Article  Google Scholar 

  • Kaur, B., Gupta, S. R., & Singh, G. (2000). Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology, 15, 283–294.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lee, K. H., & Jose, S. (2003). Soil respiration and microbial biomass in a pecan–cotton alley cropping system in southern USA. Agroforestry Systems, 58, 45–54.

    Article  Google Scholar 

  • Leifeld, J., & Kögel-Knabner, I. (2005). Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma, 124, 143–155.

    Article  CAS  Google Scholar 

  • Li, W. (2004). Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 201, 33–41.

    Article  Google Scholar 

  • Liang, W., Hu, H., Liu, F., & Zhang, D. (2006). Research advance of biomass and carbon storage of poplar in China. Journal of Forestry Research, 17, 75–79.

    Article  CAS  Google Scholar 

  • Liao, J. D., & Boutton, T. W. (2008). Soil microbial biomass response to woody plant invasion of grassland. Soil Biology & Biochemistry, 40, 1207–1216.

    Article  CAS  Google Scholar 

  • Mao, R., & Zeng, D. H. (2010). Changes in soil particulate organic matter, microbial biomass and activity following afforestation of marginal agricultural lands in a semi-arid area of Northeast China. Environmental Management, 46, 110–116.

    Article  Google Scholar 

  • Mao, R., Zeng, D. H., Hu, Y. L., Li, L. J., & Yang, D. (2010). Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant and Soil, 332, 277–287.

    Article  CAS  Google Scholar 

  • Marquez, C. O., Cambardelia, C. A., Isenhart, T. M., & Schultz, R. C. (1999). Assessing soil quality in a riparian buffer by testing organic matter fractions in Central Iowa, USA. Agroforestry Systems, 44, 133–140.

    Article  Google Scholar 

  • Mungai, N. W., Motavalli, P. P., & Kremer, R. J. (2006). Soil organic carbon and nitrogen fractions in temperate alley cropping systems. Communications in Soil Science and Plant Analysis, 37, 977–992.

    Article  CAS  Google Scholar 

  • Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172, 10–23.

    Article  CAS  Google Scholar 

  • Oelbermann, M., Voroney, R. P., & Gordon, A. M. (2004). Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and southern Canada. Agriculture, Ecosystems & Environment, 104, 359–377.

    Article  CAS  Google Scholar 

  • Oelbermann, M., Voroney, R. P., Thevathasan, N. V., Gordon, A. M., Kass, D. C. L., & Schlonvoigt, A. M. (2006). Soil carbon dynamics and residue stabilization in a Costa Rica and southern Canadian alley cropping system. Agroforestry Systems, 68, 27–36.

    Article  Google Scholar 

  • Paustian, K., Andren, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., et al. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 13, 230–244.

    Article  Google Scholar 

  • Peichl, M., Thevathasan, N. V., Gordon, A. M., Huss, J., & Abohassan, R. A. (2006). Carbon sequestration potentials in temperate tree-based intercropping systems southern Ontario, Canada. Agroforestry Systems, 66, 243–257.

    Article  Google Scholar 

  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155–176.

    Article  CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Verma, B. C., Datta, S. P., Rattan, R. K., & Singh, A. K. (2010). Monitoring changes in soil organic carbon pools, nitrogen, phosphorus and sulfur under different agricultural management practices in the tropics. Environmental Monitoring and Assessment, 171, 579–593.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wander, M. M., Yun, W., Goldstein, W. A., Aref, S., & Khan, S. A. (2007). Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application. Plant and Soil, 291, 311–321.

    Article  CAS  Google Scholar 

  • Wang, H., Huang, Y., Huang, H., Wang, K. M., & Zhou, S. Y. (2005). Soil properties under young Chinese fir-based agroforestry systems in mid-subtropical China. Agroforestry Systems, 64, 131–141.

    Article  Google Scholar 

  • Young, A. (1997). Agroforestry for soil management. Wallingford: CAB International.

    Google Scholar 

  • Zhang, J., Song, C., & Yang, W. (2006). Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Science Society of America Journal, 70, 660–667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Technologies R&D Program of China (nos. 2011BAD38B0203 and 2006BAD03A0502) and the National Natural Science Foundation of China (no. 31000297). We thank the anonymous reviewers for their helpful comments on an earlier version of this manuscript, Gui-Yan Ai for laboratory analyses, and Qing Zhang and Zhan-Peng Liu for field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hui Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, R., Zeng, DH., Li, LJ. et al. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China. Environ Monit Assess 184, 6845–6853 (2012). https://doi.org/10.1007/s10661-011-2462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2462-3

Keywords

Navigation