Skip to main content

Advertisement

Log in

Oxidative stress response in zebrafish (Danio rerio) gill experimentally exposed to subchronic microcystin-LR

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The worldwide occurrence of cyanobacterial blooms makes it necessary to perform environmental risk assessment procedures to monitor the effects of microcytins on fish. Oxidative stress biomarkers are valuable tools in this regard. Considering that zebrafish (Danio rerio) is a common model species in fish toxicology and the zebrafish gill is potentially useful in screening waterborne pollutants, this study investigated the oxidative stress response in zebrafish gill exposed to subchronic microcystin-LR (MCLR) concentrations (2 or 20 μg/l) via measurement of toxin accumulation, protein phosphatase (PP) activity, and the antioxidant parameters (glutathione-S-transferase—GST; glutathione—GSH; superoxide dismutase—SOD; catalase—CAT; glutathione peroxide—GPx; glutathione reductase—GR), as well as levels of hydroxyl radical (OH) and lipid peroxidation (LPO). The results showed that after 30 days exposure, MCLR accumulated in zebrafish gill and MCLR exposure induced PP activity in gill. A linear inhibition of GST activity and GSH content was observed in the gills, revealing that they were involved in the first step of MCLR detoxification. The 2 μg/l MCLR treatment neglectably affected OH content and the antioxidant enzymes (SOD, CAT, GPx, and GR), however oxidative stress was induced under the 20 μg/l MCLR treatment in which an enhanced OH content and alterations of the antioxidant enzymes were observed in the treated gills, although both treatments exerted little effect on LPO level. The principal component analysis results indicated that the most sensitive biomarkers of MCLR exposure were GST and GSH in zebrafish gill. So, D. rerio could be regarded as a suitable bioindicator of MCLR exposure by measuring CAT, GR, GST, and GSH as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamson, A., Andersson, C., Jösson, M. E., Fogelberg, O., Örberg, J., Brunström, B., & Brandt, I. (2007). Gill EROD in monitoring of CYP1A inducers in fish: a study in rainbow trout (Oncorhynchus mykiss) caged in Stockholm and Uppsala waters. Aquatic Toxicology, 85, 1–8.

    Article  CAS  Google Scholar 

  • Amé, M. V., Galanti, L. N., Menone, M. L., Gerpe, M. S., Moreno, V. J., & Wunderlin, D. A. (2010). Microcystin–LR, –RR, –YR and –LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae, 9, 66–73.

    Article  Google Scholar 

  • Andersen, R. J., Luu, H. A., Chen, D. Z. X., Holmes, C. F. B., Kent, M. L., Le Blanc, M., Taylor, F. J. R., & Williams, D. E. (1993). Chemical and biological evidence links microcystins to salmon netpen liver disease. Toxicon, 31, 1315–1323.

    Article  CAS  Google Scholar 

  • Athikesavan, S., Vincent, S., Ambrose, T., & Velmurugan, B. (2006). Nickel induced histopathological changes in the different tissues of freshwater fish, Hypophthalmichthys molitrix (Valenciennes). Journal of Environmental Biology, 27, 391–395.

    CAS  Google Scholar 

  • Bainy, A. C. D., Saito, E., Carvalho, P. S. M., & Junqueira, V. (1996). Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology, 34, 151–162.

    Article  CAS  Google Scholar 

  • Barata, C., Lekumberri, I., Vila-Escalé, M., Prat, N., & Porte, C. (2005). Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from Llobregat river basin (NE Spain). Aquatic Toxicology, 74, 3–19.

    Article  CAS  Google Scholar 

  • Beutler, E. (1975). The preparation of red cells for assay. In E. Beutler (Ed.), Red cell Metabolism: A Manual of Biochemical Methods (pp. 8–18). New YorK: Grune & Straton.

    Google Scholar 

  • Blom, J. F., & Jüttner, F. (2005). High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon, 46, 465–470.

    Article  CAS  Google Scholar 

  • Botha, N., Gehringer, M. M., Downing, T. G., van de Venter, M., & Shephard, E. G. (2004). The role of microcystin-LR in the induction of apoptosis and oxidative stress in Caco-2 cells. Toxicon, 43, 85–92.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive assay of protein utilizing the principle of dye binding. Analyt Biochem, 772, 248–264.

    Article  Google Scholar 

  • Carmichael, W. W., & Falconer, I. R. (1993). Diseases related to freshwater blue green algal toxins, and control measures. In I. R. Falconer (Ed.), Algal Toxins in Seafood and Drinking Water (pp. 187–209). London: Academic.

    Google Scholar 

  • Cazenave, J., Wunderlin, D. A., de los Ángeles Bistoni, M., Amé, M. V., Krause, E., Pflugmacher, S., & Wiegand, C. (2005). Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. Aquatic Toxicology, 75, 178–190.

    Article  CAS  Google Scholar 

  • Cazenave, J., Bistoni, M. A., Pesce, S. F., & Wunderlin, D. A. (2006). Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology, 76, 1–12.

    Article  CAS  Google Scholar 

  • Chan, W. S., Recknagel, F., Cao, H. Q., & Park, H. D. (2007). Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Research, 41, 2247–2255.

    Article  CAS  Google Scholar 

  • Chen, J., & Xie, P. (2005). Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of subtropical China and the risk to human consumption. Environmental Toxicology, 20, 572–584.

    Article  CAS  Google Scholar 

  • Chen, T., Cui, J., Liang, Y., Xin, X. B., Young, D. O., Chen, C., & Shen, P. P. (2006). Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR. Toxicology, 220, 71–80.

    Article  CAS  Google Scholar 

  • Chorus, I., & Bartram, J. (1999). Toxic Cyanobacteria in Water: A Guide to Public Health Consequences, Monitoring, and Management. London and New York: E&FN Spon on behalf of WHO.

    Book  Google Scholar 

  • Deblois, C. P., Aranda-Rodriguez, R., Giani, A., & Bird, D. F. (2008). Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon, 51, 435–448.

    Article  CAS  Google Scholar 

  • Ding, W. X., Shen, H. M., & Ong, C. N. (2001). Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. Journal of Toxicology and Environmental Health, 64, 507–519.

    Article  CAS  Google Scholar 

  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85, 97–177.

    Article  CAS  Google Scholar 

  • Fernandes, C., Fontainhas-Fernandes, A., Monteiro, S. M., & Salgado, M. A. (2007). Histopathological gill changes in wild leaping grey mullet (Liza saliens) from the Esmoriz-Paramos coastal lagoon, Portugal. Environmental Toxicology, 22, 443–448.

    Article  CAS  Google Scholar 

  • Fontal, O. I., Vieytes, M. R., Baptista de Sousa, J. M., Louzao, M. C., & Botana, L. M. (1999). A fluorescent microplate assay for microcystin-LR. Analytical Biochemistry, 269, 289–296.

    Article  CAS  Google Scholar 

  • Gehringer, M. M. (2004). Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Letters, 557, 1–8.

    Article  CAS  Google Scholar 

  • Guzman, R. E., Solter, P. F., & Runnegar, M. T. (2003). Inhibition of nuclear protein phosphatase activity in mouse hepatocytes by the cyanobacterial toxin microcystin-LR. Toxicon, 41, 773–781.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  • Hissin, P. J., & Hilf, R. (1976). A fluoremetric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry, 74, 214–226.

    Article  CAS  Google Scholar 

  • Hoeger, S. J., Hitzfeld, B. C., & Dietrich, D. R. (2005). Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and Applied Pharmacology, 203, 231–242.

    Article  CAS  Google Scholar 

  • Hussain, T., Shukla, G., & Chandra, S. V. (1987). Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharm Toxicol, 60, 355–359.

    Article  CAS  Google Scholar 

  • Jönsson, M. E., Brunström, B., & Brandt, I. (2009). The zebrafish gill model: Induction of CYP1A, EROD and PAH adduct formation. Aquatic Toxicology, 91, 62–70.

    Article  Google Scholar 

  • Jos, Á., Pichardo, S., Prieto, A. I., Repetto, G., Vázquez, C. M., Moreno, I., & Cameán, A. M. (2005). Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquatic Toxicology, 72, 261–271.

    Article  CAS  Google Scholar 

  • Kondo, F., Matsumoto, H., Yamada, S., Ishikawa, N., Ito, E., Nagata, S., Ueno, Y., Suzuki, M., & Harada, K. (1996). Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chemical Research in Toxicology, 9, 1355–1359.

    Article  CAS  Google Scholar 

  • Li, X. Y., Liu, Y. D., Song, L., & Liu, J. T. (2003). Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 42, 85–89.

    Article  CAS  Google Scholar 

  • Li, X. Y., Chung, I. K., Kim, J. I., & Lee, J. A. (2004). Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to microcystis under laboratory conditions. Toxicon, 44, 821–827.

    Article  CAS  Google Scholar 

  • Li, L., Xie, P., Li, S. X., Qiu, T., & Guo, L. G. (2007). Sequential ultrastructural and biochemical changes induced in vivo by the hepatotoxic microcystins in liver of the phytoplanktivorous silver carp Hypophthalmichthys molitrix. Comp. Biochem Physiol C: Pharmacol Toxicol, 146, 357–367.

    Article  Google Scholar 

  • Malbrouck, C., Trausch, G., Devos, P., & Kestemont, P. (2003). Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Physiol C: Toxicol Pharmacol, 135, 39–48.

    Article  Google Scholar 

  • Malbrouck, C., Trausch, G., Devos, P., & Kestemont, P. (2004). Effect of microcystin-LR on protein phosphatase activity and glycogen content in isolated hepatocytes of fed and fasted juvenile goldfish Carassius auratus L. Toxicon, 44, 927–932.

    Article  CAS  Google Scholar 

  • Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630–648.

    Article  CAS  Google Scholar 

  • McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055.

    CAS  Google Scholar 

  • Mezhoud, K., Bauchet, A. L., Château-Joubert, S., Praseuth, D., Marie, A., François, J. C., Fontaine, J. J., Jaeg, J. P., Cravedi, J. P., Puiseux-Dao, S., & Edery, M. (2008). Proteomic and phosphoproteomic analysis of cellular responses in medaka fish (Oryzias latipes) following oral gavage with microcystin-LR. Toxicon, 51, 1431–1439.

    Article  CAS  Google Scholar 

  • Mezhoud, K., Praseuth, D., Puiseux-Dao, S., François, J. C., Bernard, C., & Edery, M. (2008). Global quantitative analysis of protein expression and phosphorylation status in the liver of the medaka fish (Oryzias latipes) exposed to microcystin-LR I. Balneation study. Aquatic Toxicology, 86, 166–175.

    Article  CAS  Google Scholar 

  • Mikhailov, A., Härmälä-Braskén, A. S., Hellman, J., Meriluoto, J., & Eriksson, J. E. (2003). Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem Bio Interact, 142, 223–237.

    Article  CAS  Google Scholar 

  • Mohamed, Z. A., Carmichael, W. W., & Hussein, A. A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology, 13, 134–141.

    Google Scholar 

  • Nagalakshimi, N., & Prasad, M. N. V. (2001). Responses of glutathione cycle enzymes and metabolism to cooper stress in Scenedesmus bijugatus. Plant Science, 160, 291–299.

    Article  Google Scholar 

  • Nigam, D., Shukla, G. S., & Agarwal, A. K. (1999). Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicology Letters, 106, 151–157.

    Article  CAS  Google Scholar 

  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J, 1, 76–133.

    Article  CAS  Google Scholar 

  • Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.

    Article  CAS  Google Scholar 

  • Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K. A., Krause, E., Codd, G. A., & Steinberg, C. (1998). Identification of an enzymatically-formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR. The first step of detoxification. Biochem Biophys Acta, 1425, 527–533.

    Article  CAS  Google Scholar 

  • Pflugmacher, S., Wiegand, C., Beattie, K., Krause, E., Steinberg, C., & Codd, G. (2001). Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (Cav.) Trin Ex steud. Environmental Toxicology and Chemistry, 20, 846–852.

    CAS  Google Scholar 

  • Pietsch, C., Wiegand, C., Amé, M. V., Nicklisch, A., Wunderlin, D., & Pflugmacher, S. (2001). The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environmental Toxicology, 16, 535–542.

    Article  CAS  Google Scholar 

  • Pinho, G. L., Moura da Rosa, C., Maciel, F. E., Bianchini, A., Yunes, J. S., Proença, L. A., & Monserrat, J. M. (2005). Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotox Environ Saf, 61, 353–360.

    Article  CAS  Google Scholar 

  • Prieto, A. I., Jos, Á., Pichardo, S., Moreno, I., & Cameán, A. M. (2006). Differential oxidative stress response to microcystin LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquatic Toxicology, 77, 314–321.

    Article  CAS  Google Scholar 

  • Prieto, A. I., Pichardo, S., Jos, Á., Moreno, I., & Cameán, A. M. (2007). Time-dependent oxidative stress response after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquatic Toxicology, 84, 337–345.

    Article  CAS  Google Scholar 

  • Rodger, H. D., Turnbull, T., Edwards, C., & Codd, G. A. (1994). Cyanobacterial (blue-green algal) bloom associated pathology in brown trout (Salmo trutta L.) in Loch Leven, Scotland. Journal of Fish Diseases, 17, 177–181.

    Article  Google Scholar 

  • Song, L. R., Chen, W., Peng, L., Wan, N., Gan, N. Q., & Zhang, X. M. (2007). Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Research, 41, 2853–2864.

    Article  CAS  Google Scholar 

  • Strubelt, O., Kremer, J., Tilse, A., Keogh, J., Peutz, R., & Younes, M. (1996). Comparative studies on the toxicity of mercury, cadmium and copper toward the isolated perfused rat liver. Journal of Toxicology and Environmental Health, 47, 267–283.

    Article  CAS  Google Scholar 

  • Takenaka, S., & Otsu, R. (1999). Effects of L-cysteine and reduced glutathione on the toxicities of microcystin-LR: the effect for acute liver failure and inhibition of protein phosphatase activity. Aquatic Toxicology, 48, 65–68.

    Article  Google Scholar 

  • van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.

    Article  Google Scholar 

  • WHO. (1998). Guidelines for Drinking-Water Quality, Addendum to vol. 2. Geneva: World Health Organisation.

    Google Scholar 

  • Wiegand, C., Pflugmacher, S., Oberemm, A., Meems, N., Beattie, K. A., Steinberg, C., & Codd, G. A. (1999). Uptake and effects of microcystin-LR on detoxification enzymes of early life stages of the zebrafish (Danio rerio). Environmental Toxicology, 14, 89–95.

    Article  CAS  Google Scholar 

  • Wilhelm Filho, D., Torres, M. A., Marcon, J. L., Fraga, C. G., & Boveris, A. (2000). Comparative antioxidant defense in vertebrates—emphasis on fish and mammals. Trends Comp Biochem Physiol, 7, 33–45.

    CAS  Google Scholar 

  • Williams, D. E., Kent, M. L., Anderson, R. J., Klix, H., & Holmes, C. F. B. (1995). Tissue distribution and clearance of tritium-labeled dihydromicrocystin-LR epimers administered to Atlantic salmon via intraperitoneal injection. Toxicon, 33, 125–131.

    Article  CAS  Google Scholar 

  • Wiston, G. W., & DiGiulio, R. T. (1991). Prooxidant and antioxidant mechanisms in aquatic organism. Aquatic Toxicology, 19, 137–161.

    Article  Google Scholar 

  • Xia, Y. M., & Zhu, L. Z. (1987). Measurement method of glutathione peroxidase activity in blood and tissue. J Hyg Res, 16, 29–33.

    Google Scholar 

  • Xie, L., Xie, P., Guo, L., Li, L., Miyabara, Y., & Park, H. D. (2005). Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology, 20, 293–300.

    Article  CAS  Google Scholar 

  • Xie, L., Yokoyamab, A., Nakamuraa, K., & Park, H. D. (2007). Accumulation of microcystins in various organs of the freshwater snail Sinotaia histrica and three fishes in a temperate lake, the eutrophic Lake Suwa, Japan. Toxicon, 49, 646–652.

    Article  CAS  Google Scholar 

  • Yin, L., Huang, J., Huang, W., Li, D., Wang, G. H., & Liu, Y. (2005). Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon, 46, 507–512.

    Article  CAS  Google Scholar 

  • Zimba, P. V., Khoo, L., Gaunt, P., Carmichael, W. W., & Brittain, S. (2001). Confirmation of catfish, Lctalurus punctatus (Rafinesque), mortality from microcystins toxins. Journal of Fish Diseases, 24, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by open research founding for Integrated Marine Monitoring and Applied Technologies in Harmful Algal Blooms, and it was granted from the Key Laboratory of East China Sea Branch, State Oceanic Administration People’s Republic of China (MATHAB200901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zeng, SF. & Cao, YF. Oxidative stress response in zebrafish (Danio rerio) gill experimentally exposed to subchronic microcystin-LR. Environ Monit Assess 184, 6775–6787 (2012). https://doi.org/10.1007/s10661-011-2457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2457-0

Keywords

Navigation