Skip to main content

Advertisement

Log in

Bio-control of waterborne pathogens using Lactobacillus spp

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bacteria play a significant role in water contamination. Chemicals are mostly used for the treatment of bacteriologically contaminated water. The use of bacterial interactions is a new approach to limit the pathogens' growth. Detection of antimicrobial substances produced by lactic acid bacteria against the waterborne pathogens is the objective of this work. Microbiological and biochemical methods were used to identify lactic acid bacteria having an antimicrobial activity. Evaluation of antimicrobial activity with growth kinetic measurements was performed. Four isolates of lactic acid bacteria obtained from whey and curd were identified. The predominant species belonging to the Lactobacillus genera are: Lactobacillus rhamnosus, Lactobacillus sakei, Lactobacillus paracasei, and Lactobacillus paraplantarum. The present study revealed that the Lactobacillus consortium is able to inhibit Staphylococcus aureus's growth along with Escherichia coli and Vibrio species. In mixed culture, after 24 h, the Lactobacillus consortium reduces the growth of S. aureus by 2.03 log; moreover, the growth of the latter bacteria totally ceased after 72 h of incubation. The protein produced by the Lactobacillus consortium was responsible for arresting the growth of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Martin, P., Florez, A. B., Barranco, H., & Mayo, B. (2008). Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control, 19, 62–70.

    Article  CAS  Google Scholar 

  • Ananou, S., Maqueda, M., Martinez-Bueno, M., Gavez, A., & Valdivia, E. (2007). Bactericidal antisynergism through enterocin AS-48 and chemical preservatives against Staphylococcus aureus. Letters Applied Microbiology, 45, 19–23.

    Article  CAS  Google Scholar 

  • Arquès, J. L., Rodriguez, E., Gaya, P., Medina, M., Guamis, B., & Nunez, M. (2005). Inactivation of Staphylococcus aureus in raw milk cheese by combination of high-press treatments and bacteriocin-producing lactic acid bacteria. International Dairy Journal, 15, 893–900.

    Article  Google Scholar 

  • Aslim, B., Yuksekdag, Z. N., Sarikaya, E., & Beyatli, Y. (2005). Determination of the bacteriocin-like substances produced by nap lactic acid bacteria isolated from Turkish dairy products. LWT, 38, 691–694.

    Article  CAS  Google Scholar 

  • Avila, M., Garde, S., Medina, M., & Nunez, M. (2005). Effects of milk inoculation with bacteriocin-producing lactic acid bacteria on a Lactobacillus helveticus adjunct cheese culture. Journal of Food Protection, 68(5), 1026–1033.

    CAS  Google Scholar 

  • Badis, A., Guetarni, D., Moussa-Boudjema, B., Henni, D. E., & Kihal, M. (2004). Identification and technological properties of lactic acid bacteria isolated from raw goats milk of furnace Algerian races. Food Microbiology, 21(5), 579–588.

    Article  Google Scholar 

  • Barefoot, S. F., & Klaenhammer, T. R. (1983). Detection and activity of lacticin B, has bacteriocin produced by Lactobacillus acidophilus. Applied Environment Microbiology, 45(6), 1808–1815.

    CAS  Google Scholar 

  • Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for uses ace has protective culture for vacuum-packed meatuses: culture insulation, bacteriocin identification and meatus experiments application. International Journal Food Microbiology, 83, 171–184.

    Article  Google Scholar 

  • Callewaert, R., & De Vuyst, L. (2000). Bacteriocins production with Lactobacillus amylovorus DCE 471 is improved and stabilized by EDF-batch fermentation. Applied Environment Microbiology, 66, 606–613.

    Article  CAS  Google Scholar 

  • Campos, A., Rodriguez, O., Calo-mata, P., Prado, M., & Barros-velazquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcusmundtii strain isolated from turbot (Psetta maxima). Food Research International, 39, 356–364.

    Article  CAS  Google Scholar 

  • Carr, F. J., Chill, D., & Maida, N. R. (2002). The lactic acid bacteria: with literature survey. Current Review Microbiology, 90, 172–179. Microbiol, 28 (4), 281–370.

    Google Scholar 

  • Casalta, E., Vassal, Y., Desmazeaud, M. J., & Casabianca, F. (1995). Comparaison de l'activité acidifiante de souche de Lactococcus lactis isolées de lait et de fromage Corse. Lebensmittel-Wissenschaft Technology, 28, 291–299.

    Article  CAS  Google Scholar 

  • Cocolin, L., Foschino, R., Comi, G., & Fortina, M. G. (2007). Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiology, 31, 753–758.

    Google Scholar 

  • De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacillus. Journal Applied Bacteriology, 23, 130–135.

    Article  Google Scholar 

  • De Vuyst, L., Foulquie, M. R., & Revets, H. (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in Enterococci of different origins. International Journal Food Microbiology, 84, 299–318.

    Article  Google Scholar 

  • Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaky, A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. Microbiological Reviews, 24, 85–106.

    Article  CAS  Google Scholar 

  • Fleming, H. P., Erchells, J. L., & Caslilow, R. N. (1975). Microbiol inhibition on isolate Pediococcus from cucumber bune. Applied Environment Microbiology, 30, 1040–1042.

    CAS  Google Scholar 

  • Ghrairi, T., Frere, J., Berjeaud, J. M., & Mania, M. (2008). Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control, 19, 162–169.

    Article  CAS  Google Scholar 

  • Guessas, B. (2007). Les potentialités métaboliques des bactéries lactiques isolées du lait cru de chèvre dans le bio-contrôle de Staphylococcus aureus. Thèse de doctorat d'état. Département de biologie, Faculté des sciences, Université d'Oran, Es-Senia. pp: 165

  • Guessas, B., Hadadji, M., Saidi, N., & Kihal, M. (2006). Inhibition of Staphylococcus aureus growth in milkby lactic acid bacteria. Dirassat, 32(3), 53–60.

    Google Scholar 

  • Hernandez, D., Cardell, E., & Zarate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheeses: initial characterization of plantaricin TF 711, bacteriocin like substance produced by Lactobacillus plantarum. TF711. Journal Applied Microbiology, 99, 77–84.

    Article  CAS  Google Scholar 

  • Jacobsen, T., Budde, B. B., & Koch, A. G. (2003). Application of Leuconostoc carnosum for biopreservation of cooked meatus products. Journal Applied Microbiology, 95, 242–249.

    Article  CAS  Google Scholar 

  • Jamuna, M., Babusha, S. T., & Jeevaratnam, K. (2005). Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiology, 22, 449–454.

    Article  CAS  Google Scholar 

  • Kaban, G., & Kaya, M. (2006). Effect of starter culture on growth of Staphylococcus aureus in sucuk. Food Control, 17, 797–801.

    Article  CAS  Google Scholar 

  • Kabuki, T., Uenishi, H., Watanabe, M., Seto, H., & Nakajima, H. (2007). Characterization of a bacteriocin, Thermophilin 1277, produced by Streptococcus thermophulus SB1277. Letters in Applied Microbiology, 102, 971–980.

    CAS  Google Scholar 

  • Kalchayanand, N. R., Hanilin, M. B., & Ray, B. (1992). Sublethal injury makes Gram-negative and resistant Gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Letters Applied Microbiology, 15, 239–243.

    Article  CAS  Google Scholar 

  • Kihal, M., Henni, D. E., Prevost, H., & Diviès, C. (2006). A new manometric method for measuring carbon dioxide production by starter culture: a case of Leuconostoc mesenteroides. African Journal Biotechnology, 5, 378–383.

    CAS  Google Scholar 

  • Klein, G., Pack, A., Bonaparte, C., & Reuter, G. (1998). Taxonomy and physiology of probiotic lactic acid bacteria. International Journal Food Microbiology, 41, 103–125.

    Article  CAS  Google Scholar 

  • Larsen, A. G., Vogensen, F. K., & Josephsen, J. (1993). Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Journal Applied Bacteriology, 75, 113–122.

    Article  CAS  Google Scholar 

  • Mc Auliffe, O., Ross, R. P., & Hill, C. (2001). Lantibiotics structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25, 285–308.

    Article  CAS  Google Scholar 

  • Miteva, V., Ivanova, I., Budakov, I., Pantev, A., Stefanova, S., Danova, P., Monchev, V., Mitev, X., Dousset, & Boyaval, P. (1998). Detection and characterization of has Novell antibacterial substance produced by Lactobacillus delbrueckii strain 1043. Journal Applied Microbiology, 85, 603–614.

    Article  CAS  Google Scholar 

  • Moll, G. N., Van der Akker, E., Hauge, H. H., Nissen-Meyer, J., Nes, I. F., Konings, W. N., & Driessen, A. J. M. (1999). Complementary and overlapping selectivity of the two- peptid bacteriocins plantaricin EF and JK. Journal of Bacteriology, 181, 4848–4852.

    CAS  Google Scholar 

  • Mwa Chiro, E. C., & Durve, V. S. (1997). Bacterial status of Lake Bari, Udaipur. India. Eco Env Cons, 3(2), 83–89.

    CAS  Google Scholar 

  • Otero, C. M., & Macias, N. R. (2006). Inhibition of Staphylococcus aureus by H2O2- producing Lactococcus gasseri isolated from the vaginal leaflet of cattle. Animal Reproduction Science, 96, 35–46.

    Article  CAS  Google Scholar 

  • Oyetayo, V. O., Adetuyi, F. C., & Akinyosoye, F. A. (2003). Safety and protective effect of Lactobacillus acidophilus and Lactobacillus casei used as probiotic agent in vivo. African Journal Biotechnology, 2, 448–452.

    CAS  Google Scholar 

  • Paul, J., & Pearce, A. (2006). A new augmentation method for bioremediation of pathogenic bacteria-contaminated water and sludge microbiology. Conroe, TX: Nova Biologicals, Inc.

    Google Scholar 

  • Podolak, P. K., Zayas, J. F., Kastner, C. L., & Fung, D. Y. C. (1996). Inhibition of Listeria monocytogenes Escherichia coli O157:H7 on beef by application of organic acids. Journal of Food Protection, 59, 370–373.

    CAS  Google Scholar 

  • Rodriguez, E., Calzada, J., Arquès, J. L., Rodrigues, J. M., Nunez, M., & Medina, M. (2005). Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. International Dairy Journal, 15, 51.

    Article  CAS  Google Scholar 

  • Schillinger, U., & Lücke, K. (1989). Animicrobial activity of Lactobacillus sake isolated from meatus. Applied Environment Microbiology, 55, 1901–1906.

    CAS  Google Scholar 

  • Stiles, M. E., Wilhelm, H., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal Food Microbiology, 36, 1–29.

    Article  CAS  Google Scholar 

  • Tagg, J. R., & Mc Given, A. R. (1971). Assay system for bacteriocins. Journal Applied Microbiology, 21, 943.

    CAS  Google Scholar 

  • Tahara, T., & Kanatani, K. (1996). Isolation, partial characterization and mode of action of acidocin J1229, a bacteriocin produced by Lactobacillus acidophilus JCM 1229. Journal Applied Bacteriology, 81, 669–677.

    CAS  Google Scholar 

  • Vermeiren, L., Devlieghere, F., & Debevere, J. (2004). Protective evaluation of meatus born lactic acid bacteria ace cultures for the biopreservation of cooked meatus products. International Journal Food Microbiology, 96, 149–164.

    Article  CAS  Google Scholar 

  • Wilson, A. R., Sigee, D., & Epton, H. A. S. (2005). Antisynergism bacterial activity of Lactobacillus plantarum strain SK1 against Listeria monocytogenes is due to lactic acid production. Journal Applied Microbiology, 99, 1516–1522.

    Article  CAS  Google Scholar 

  • Wong, H. C., & Chen, Y. L. (1988). Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Applied Environment Microbiology, 54, 2179–2184.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to the laboratory staff of EIRA Division, NEERI, Nagpur, for their valuable support during the entire study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghyandeep L. Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaikwad, G.L., Gupta, P. & Wate, S.R. Bio-control of waterborne pathogens using Lactobacillus spp. Environ Monit Assess 184, 6627–6635 (2012). https://doi.org/10.1007/s10661-011-2447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2447-2

Keywords

Navigation