Skip to main content

Advertisement

Log in

Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoremediation is a well-known promising alternative to conventional approaches used for the remediation of diffused and moderated contaminated soils. The evaluation of the accumulation, availability, and interactions of heavy metals in soil is a priority objective for the possible use of phytoremediation techniques such as phytoextraction and phytostabilization. The soils used in this work were collected from a number of sites inside a protected area in the Apulia region (Southern Italy), which were contaminated by various heavy metals originated from the disposal of wastes of different sources of origin. Soils examined contained Cd, Cr, Cu, Ni, Pb, and Zn in amounts exceeding the critical limits imposed by EU and Italian laws. However, the alkaline conditions, high organic matter content, and silty to silty loamy texture of soils examined would suggest a reduced availability of heavy metals to plants. Due to the high total content but the low available fraction of heavy metals analyzed, especially Cr, phytoextraction appears not to be a promising remediation approach in the sites examined, whereas phytostabilization appears to be the best technique for metal decontamination in the studied areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Heavy Metals in Soils. Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Altamura (2005). Relazione Tecnica Finale del progetto di bonifica di un, area della “Alta Murgia” Alla Località cervone. Regione Puglia. D.M.A. 25 ottobre 1999 n. 471. (In Italian).

  • Amit, K. G., & Sarita, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64, 61–173.

    Google Scholar 

  • Baath, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.

    Article  CAS  Google Scholar 

  • Babich, H., & Stotzky, G. (1977). Sensitivity of various bacteria including actinomycetes and fungi to cadmium and the influence of pH on sensitivity. Applied and Environmental Microbiology, 33(3), 681–659.

    CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In N. Terry et al. (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Berti, W. R., & Jacobs, L. W. (1996). Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications. Journal of Environmental Quality, 25, 1025–1032.

    Article  CAS  Google Scholar 

  • Brunetti, G., Soler-Rovira, P., Farrag, K., & Senesi, N. (2009a). Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant and Soil, 318, 285–298. doi:10.1007/s11104-008-9838-3.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., & Senesi, N. (2009b). Time frame and effectiveness of phytoremediation for heavy metal decontamination of soils in the Apulia region, southern Italy. In: N. Senesi and W. Bergheim (Ed.), Book of Abstract of the 15th International Symposium MESAEP 2009 “Environmental Pollution and its Impact on Life in the Mediterranean Region” (p. 56). 7:11.10.2009, Bari—Italy. ISBN 978-3-936175-12-7.

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Nigro, F., & Senesi, N. (2011a). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160, 517–523. doi:10.1016/j.geoderma.2010.10.023.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2011b). Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field condition. Journal of plant interactions. doi:10.1080/17429145.2011.603438.

  • Cataldo, D., Garland, T., & Wildung, R. (1981). Cadmium distribution and chemical fate in soybean plants. Plant Physiology, 68, 835–839.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Chen, X., Wright, J., Conca, J., & Peurrung, L. (1997). Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology, 31(3), 624–631.

    Article  CAS  Google Scholar 

  • Commission of the European Communities. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities Directive, 181(No. L), 6–12.

    Google Scholar 

  • Cui, Y., Wang, Q., & Christie, P. (2004). Effect of elemental sulphur on the uptake of cadmium, zinc and sulphur by oilseed rape growing on soil contaminated with zinc and cadmium. Communications in Soil Science and Plant Analysis, 35(19/20), 2905–2916.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 134, 393–397.

    Article  Google Scholar 

  • Doner, H. E. (1978). Chloride as a factor in mobilities of Ni(II), Cu(II), and Cd(II) in soil. Soil Science Society of America Journal, 42, 882–885.

    Article  CAS  Google Scholar 

  • Elliott, H. A., Liberati, M. R., & Hvang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.

    Article  CAS  Google Scholar 

  • Emmanuel, D., Virginie, V. K., & Hervé, S. M. (2006). Heavy metal content in soils of Réunion (Indian Ocean). Geoderma, 134, 119–134.

    Article  Google Scholar 

  • Farrag, K., Brunetti, G., & Senesi, N. (2009). Potential of Brassica napus for the phytoremediation of heavy metals contaminated soils in Apulia region, southern Italy. In: N. Senesi and W. Bergheim (Ed.), Book of Abstract of the 15th International Symposium MESAEP 2009 “Environmental Pollution and its Impact on Life in the Mediterranean Region” (p. 56). 7:11.10.2009, Bari-Italy. ISBN 978-3-936175-12-7.

  • Farrag, K., Brunetti, G., Soler-Rovira, P., & Nigro, F. (2010) Phytoremediation of a soil polluted with multiple heavy metals using MSW compost as organic carbon source. In: J.A. González-Pérez, F.J. González-Vila, G. Almendros (Ed.), Proceedings Book of the Communications presented to the 15th Meeting of the International Humic Substances Society “Advances In Natural Organic Matter And Humic Substances Research 2008-2010” (Vol 3, pp 213–216). June 27–July 2, 2010, Tenerife—Canary Islands, Spain,

  • Gravina (2005) Relazione Tecnica Finale del Piano di Caratterizzazione Ambientale ai sensi del DM 471/99 dell’area denominata Gravina in Puglia a stralcio del Piano di Caratterizzazione del sito “Alta Murgia in Puglia”. Regione Puglia, Doc. n. (001./01), p. 1:143. (In Italian).

  • He, Q. B., & Singh, B. R. (1993). Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Journal of Soil Science, 44, 641–650.

    Article  CAS  Google Scholar 

  • Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., & Yan, C. Y. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67, 2148–2155.

    Article  CAS  Google Scholar 

  • Italy (1999). Ministero per le Politiche Agricole, Metodi ufficiali di analisi chimica del suolo. Decreto Ministeriale del 13 Settembre1999. Gazzetta Ufficciale n 248 del 21.10.1999. (In Italian).

  • Italy (2006). Ministerio dell’Ambiente, Norme in materia ambientale. Decreto Legislativo 3 Aprile 2006, n 152. Gazzetta Ufficiale n 88 del 14.04.2006. (In Italian).

  • Jahiruddin, M., Livesey, N. T., & Cresser, M. S. (1985). Observations on the effect of soil pH upon zinc absorption by soils. Communications in Soil Science and Plant Analysis, 16, 909–922.

    Article  CAS  Google Scholar 

  • John, M. K., & VanLaerhoven, C. J. (1972). Lead distribution in plants grown on a contaminated soil. Environmental Letters, 3(2), 111–116.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: FL7 CRC Press.

    Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science and Technology, 34, 1778–1783.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., Römkens, P. F. A. M., Song, J., Temminghoff, E. J. M., & Japenga, J. (2007). Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water, Air, and Soil Pollution, 181, 355–371. doi:10.1007/s11270-006-9307-7.

    Article  CAS  Google Scholar 

  • Larlson, J., Likens, G., Fitzpatrick, J., & Crock, J. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406, 181–183.

    Article  CAS  Google Scholar 

  • Lee, B. D., Carter, B. J., Basta, N. T., & Weaver, B. (1997). Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61, 218–223.

    Article  CAS  Google Scholar 

  • Li, L., & Wu, G. (1999). Numerical simulation of transport of four heavy metals in kaolinite clay. Journal of Environmental Engineering, 125(4), 314–324.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207–214.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids and radionuclides. Advances in Agronomy, 75, 1–56.

    Article  CAS  Google Scholar 

  • Mench, M., Vangronsveld, J., Didier, V., & Clijsters, H. (1994). Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil. Environmental Pollution, 86, 279–286.

    Article  CAS  Google Scholar 

  • Mininni, M. (1996). Risorse ambientali. In G. Grittani (Ed.), Un approccio metodologico alla pianificazione di area vasta (pp. 35–86). Milano: Ed. Franco Angeli.

    Google Scholar 

  • Ochiai, E. (1995). Toxicity of heavy metals and biological defense. Journal of Chemical Education, 72(6), 479–484.

    Article  CAS  Google Scholar 

  • Peles, J., Brewer, S., & Barrett, G. (1998). Heavy metal accumulation by old-field plant species during recovery of sludge-treated ecosystems. American Midland Naturalist, 140(2), 245–251.

    Article  Google Scholar 

  • Pérez-de-Mora, A., Madejón, E., Burgos, P., & Cabrera, F. (2006). Trace element availability and plant growth in a minespill-contaminated soil under assisted natural remediation II. Plants. Science of the Total Environment, 363, 38–45.

    Article  Google Scholar 

  • Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.

    Article  CAS  Google Scholar 

  • Robinson, B., Fernández, J. E., Madejón, P., Marañón, T., Murillo, J. M., Green, S., & Clothier, B. (2003). Phytoextraction: An assessment of biogeochemical and economic viability. Plant and Soil, 249, 117–125.

    Article  CAS  Google Scholar 

  • Ross, S. M. (1994). Retention, transformation and mobility of toxic metals in soils. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 63–152). New York: Wiley.

    Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28, 1442–1447.

    Article  CAS  Google Scholar 

  • Sims, J. T., & Kline, J. S. (1991). Chemical fractionations and plant uptake of heavy metals in soils amended with co-composted sewage sludge. Journal of Environmental Quality, 20, 387–395.

    Article  CAS  Google Scholar 

  • Sloan, J. J., Dowdy, R. H., Dolan, M. S., & Linden, D. R. (1997). Long-term effects of biosolids applications on heavy metal bioavailability in agricultural soils. Journal of Environmental Quality, 26, 966–974.

    Article  CAS  Google Scholar 

  • Walter, I., & Cuevas, G. (1999). Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. Science of the Total Environment, 226(2–3), 113–119.

    Article  CAS  Google Scholar 

  • Walter, I., Martínez, F., Alonso, L., De Gracia, J., & Cuevas, G. (2001). Extractable soil heavy metals following the cessation of biosolids application to agricultural soil. Environmental Pollution, 117, 315–321.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by Regione Puglia (Italy) through the research project POR Puglia 2000–2006, Misura 1.8-Azione 4: “Monitoraggio siti inquinati”. Supporto scientifico alle attività di recupero funzionale ed il ripristino ambientale del sito inquinato dell’Alta Murgia. P. Soler-Rovira is a recipient of a contract from JAE-Doc program of CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brunetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrag, K., Senesi, N., Rovira, P.S. et al. Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy. Environ Monit Assess 184, 6593–6606 (2012). https://doi.org/10.1007/s10661-011-2444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2444-5

Keywords

Navigation