Skip to main content
Log in

Assessment of sampling and analytical uncertainty of trace element contents in arable field soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Assessment of trace element contents in soils is required in Germany (and other countries) before sewage sludge application on arable soils. The reliability of measured element contents is affected by measurement uncertainty, which consists of components due to (1) sampling, (2) laboratory repeatability (intra-lab) and (3) reproducibility (between-lab). A complete characterization of average trace element contents in field soils should encompass the uncertainty of all these components. The objectives of this study were to elucidate the magnitude and relative proportions of uncertainty components for the metals As, B, Cd, Co, Cr, Mo, Ni, Pb, Tl and Zn in three arable fields of different field-scale heterogeneity, based on a collaborative trial (CT) (standardized procedure) and two sampling proficiency tests (PT) (individual sampling procedure). To obtain reference values and estimates of field-scale heterogeneity, a detailed reference sampling was conducted. Components of uncertainty (sampling person, sampling repetition, laboratory) were estimated by variance component analysis, whereas reproducibility uncertainty was estimated using results from numerous laboratory proficiency tests. Sampling uncertainty in general increased with field-scale heterogeneity; however, total uncertainty was mostly dominated by (total) laboratory uncertainty. Reproducibility analytical uncertainty was on average by a factor of about 3 higher than repeatability uncertainty. Therefore, analysis within one single laboratory and, for heterogeneous fields, a reduction of sampling uncertainty (for instance by larger numbers of sample increments and/or a denser coverage of the field area) would be most effective to reduce total uncertainty. On the other hand, when only intra-laboratory analytical uncertainty was considered, total sampling uncertainty on average prevailed over analytical uncertainty by a factor of 2. Both sampling and laboratory repeatability uncertainty were highly variable depending not only on the analyte but also on the field and the sampling trial. Comparison of PT with CT sampling suggests that standardization of sampling protocols reduces sampling uncertainty, especially for fields of low heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argyraki, A., Ramsey, M. H., & Thompson, M. (1995). Proficiency testing in sampling: pilot study on contaminated land. Analyst, 120, 2799–2803.

    Article  CAS  Google Scholar 

  • BBodSchV (1999). BBodSchV—Bundes-Bodenschutz- und Altlastenverordnung. Vom 12. Juli 1999 (BGBl. I 1999 S. 1554).

  • Brus, D. J., Spätjens, L. E. E. M., & de Gruijter, J. J. (1999). A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation. Geoderma, 89, 129–148.

    Article  Google Scholar 

  • Cameron, D. R., Mybert, M., Toogood, J. A., & Loverty, D. H. (1971). Accuracy of field sampling for soil tests. Canadian Journal of Soil Science, 51, 165–175.

    Article  Google Scholar 

  • Cameron, D., Paterson, J. E., & Hunter, E. A. (1994). The components of variation associated with sampling soil for the measurement of major and trace nutrients in grazed fields in S.E. Scotland. Soil Use and Management, 10, 1–5.

    Article  Google Scholar 

  • Cline, M. G. (1944). Principles of soil sampling. Soil Science, 58, 275–288.

    Article  CAS  Google Scholar 

  • Corbeil, R. R., & Searle, S. R. (1976). Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics, 18, 31–38.

    Article  Google Scholar 

  • Correll, R. L. (2001). The use of composite sampling in contaminated sites—a case study. Environmental and Ecological Statistics, 8, 185–200.

    Article  CAS  Google Scholar 

  • Cox, D. R., & Solomon, P. J. (2002). Components of variance. New York: Chapman and Hall, CRC.

    Google Scholar 

  • De Zorzi, P., Belli, M., Barbizzi, S., Menegon, S., & Deluisa, A. (2002). A practical approach to assessment of sampling uncertainty. Accreditation and Quality Assurance, 7, 182–188.

    Article  Google Scholar 

  • De Zorzi, P., Barbizzi, S., Belli, M., Mufato, R., Sartori, G., & Stocchero, G. (2008). Soil sampling strategies: Evaluation of different approaches. Applied Radiation and Isotopes, 66(11), 1691–1694.

    Article  Google Scholar 

  • Desaules, A., & Dahinden, R. (1994). Die Vergleichbarkeit von Schwermetallanalysen in Bodenproben von Dauerbeobachtungsflächen—Ergebnisse eines Probenahmeringversuches (p. 27). Liebefeld: Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene.

    Google Scholar 

  • Garrett, R. G. (1969). The determination of sampling and analytical errors in exploration geochemistry. Economic Geology, 64(5), 568–569.

    Article  Google Scholar 

  • Gerlach, R. W., Dobb, D. E., Raab, G. A., & Nocerino, J. M. (2002). Gy sampling theory in environmental studies. 1. Assessing soil splitting protocols. Journal of Chemometrics, 16, 321–328.

    Article  CAS  Google Scholar 

  • Hoffmann, G. (1991). Die Untersuchung von Böden. VDLUFA-Methodenbuch 1. Darmstadt: VDLUFA.

    Google Scholar 

  • Hyslop, N. P., & White, W. H. (2009). Estimating precision using duplicate measurements. Journal of the Air and Waste Management Association, 59, 1032–1039. Sp. Iss.

    Article  Google Scholar 

  • ISO (International Standardization Organization). (2002). Soil quality—sampling—part 1: Guidance on the design of sampling programmes. ISO 10381-1:2002. Geneva: ISO.

    Google Scholar 

  • ISO (International Standardization Organization). (2005). Statistical methods for use in proficiency testing by interlaboratory comparisons. 13528 First edition 2005-09-01. Geneva: ISO.

    Google Scholar 

  • Jacob, W. C., & Klute, A. (1956). Sampling soils for physical and chemical properties. Soil Science Society of America Proceedings, 20, 170–172.

    Article  CAS  Google Scholar 

  • Kerschberger, M., & Richter, D. (1992). Untersuchungen zur Streuung der Bodenuntersuchungsergebnisse von pH, P, K, Mg auf grossen Feldschlägen des Ackerlandes. Archiv für Acker- und Pflanzenbau und Bodenkunde, 36, 163–170.

    CAS  Google Scholar 

  • Kulick, J. (1997). Erläuterungen zur Geologischen Karte von Hessen 1:25000, Blatt Nr. 4719 Korbach (2nd ed.). Wiesbaden: Hessisches Landsamt für Umwelt und Geologie.

    Google Scholar 

  • Kurfürst, U., Desaules, A., Rehnert, A., & Muntau, H. (2004). Estimation of measurement uncertainty by the budget approach for heavy metal content in soils under different land use. Accreditation and Quality Assurance, 9, 64–75.

    Article  Google Scholar 

  • Kurfürst, U., Buczko, U., Kleimeier, C., & Kuchenbuch, R. O. (2011). Soil sampling uncertainty on arable fields estimated from reference sampling and a collaborative trial. Accreditation and Quality Assurance, 16, 73–81.

    Article  Google Scholar 

  • Lamé, F. P. J., & Defize, P. R. (1993). Sampling of contaminated soil: Sampling error in relation to sample size and segregation. Environmental Science and Technology, 27, 2035–2044.

    Article  Google Scholar 

  • Lauzon, J. D., O’Halloran, I. P., Fallow, D. J., von Bertoldi, A. P., & Aspinall, D. (2005). Spatial variability of soil test phosphorus, potassium, and pH of Ontario soils. Agronomy Journal, 97, 524–532.

    Article  CAS  Google Scholar 

  • Lewandowski, J., Leitschuh, S., & Koß, V. (1997). Schadstoffe im Boden: eine Einführung in Analytik und Bewertung. Berlin: Springer.

    Book  Google Scholar 

  • Lischer, P., Dahinden, R., & Desaules, A. (2001). Quantifying uncertainty of the reference sampling procedure used at Dornach under different soil conditions. The Science of the Total Environment, 264, 119–126.

    Article  CAS  Google Scholar 

  • Lyn, J. A., Ramsey, M. H., Fussell, R. J., & Wood, R. (2003). Measurement uncertainty from physical sample preparation: estimation including systematic error. Analyst, 128, 1391–1398.

    Article  CAS  Google Scholar 

  • Lyn, J. A., Ramsey, M. H., Coad, S., Damant, A. P., Wood, R., & Boon, K. A. (2007). The duplicate method of uncertainty estimation: Are eight targets enough? Analyst, 132, 1147–1152.

    Article  CAS  Google Scholar 

  • Mallarino, A.P., Beegle, D.B., & Joern, B.C. (2006). Soil sampling methods for phosphorus—spatial concerns. A SERA-17 Position Paper (Southern Education Research Activities 17), United States Department of Agriculture. http://www.sera17.ext.vt.edu/Documents/Sampling-P-Spatial%20Concerns.pdf. Accessed 13 Sep 2010.

  • Minkkinen, P. (1986). Monitoring the precision of routine analyses by using duplicate determinations. Analytica Chimica Acta, 191, 369–376.

    Article  CAS  Google Scholar 

  • MLUV (Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern) (Ed.) (2009). Probenahme von Boden, Pflanzen und Düngemitteln. http://www.lms-beratung.de/upload/59/1242377834_9917_40607.pdf. Accessed 13 Sep 2010.

  • Muntau, H., Rehnert, A., Desaules, A., Wagner, G., Theocharopoulous, S., & Quevauviller, P. (2001). Analytical aspects of the CEEM soil project. The Science of the Total Environment, 264, 27–49.

    Article  CAS  Google Scholar 

  • Munzert, M., Kießling, G., Übelhör, W., Nätscher, L., & Neubert, K. H. (2007). Expanded measurement uncertainty of soil parameters derived from proficiency-testing data. Journal of Plant Nutrition and Soil Science, 170, 722–728.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Nestler, A. (2007). Bestimmung der Messunsicherheit für die Verfahren und Methoden zur Bodenanalytik des Anhanges 1 der Bundes-Bodenschutz- und Altlastenverordnung (Determination of measurement uncertainty in soil analysis by procedures and methods according to Federal Soil Protection and Contaminated Sites Ordinance). Ph.Diss., FU Berlin.

  • Ramsey, M. H. (1998). Sampling as a source of measurement uncertainty: Techniques for quantification and comparison with analytical sources. Journal of Atomic Spectrometry, 13, 97–104.

    Article  CAS  Google Scholar 

  • Ramsey, M. H., & Argyraki, A. (1997). Estimation of measurement uncertainty from field sampling: Implications for the classification of contaminated land. The Science of the Total Environment, 198, 243–257.

    Article  CAS  Google Scholar 

  • Ramsey, M.H., & Ellison, S.L.R. (eds.) (2007). Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: A guide to methods and approaches. p. 102. http://www.eurachem.org/guides/UfS_2007.pdf. Accessed 13 Sep 2010.

  • Ramsey, M. H., & Thompson, M. (2007). Uncertainty from sampling, in the context of fitness for purpose. Accreditation and Quality Assurance, 12, 503–513.

    Article  CAS  Google Scholar 

  • Ramsey, M. H., Thompson, M., & Hale, M. (1992). Objective evaluation of precision requirements for geochemical analysis using robust analysis of variance. Journal of Geochemical Exploration, 44, 23–36.

    Article  CAS  Google Scholar 

  • Ramsey, M. H., Geelhoed, B., Damant, A. P., & Wood, R. (2011). Improved evaluation of measurement uncertainty from sampling by inclusion of between-sampler bias using sampling proficiency testing. Analyst, 136, 1313–1323.

    Article  CAS  Google Scholar 

  • Rawlins, B. G., Scheib, A., Lark, R. M., & Lister, T. R. (2009). Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale. European Journal of Soil Science, 60, 740–747.

    Article  CAS  Google Scholar 

  • Taylor, P. D., Ramsey, M. H., & Potts, P. J. (2005). Spatial contaminant heterogeneity: Quantification with scale of measurement at contrasting sites. Journal of Environmental Monitoring, 7, 1364–1370.

    Article  CAS  Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part 1. Theoretical approach and estimation of analytical reproducibility. Analyst, 101, 690–698.

    Article  CAS  Google Scholar 

  • Thompson, M., & Lowthian, P. J. (1995). A Horwitz-like function describes precision in a proficiency test. Analyst, 120, 271–272.

    Article  CAS  Google Scholar 

  • Tremel, A., Masson, P., Sterckeman, T., Baize, D., & Mench, M. (1997). Thallium in French agrosystems—I. Thallium contents in arable soils. Environmental Pollution, 95, 293–302.

    Article  CAS  Google Scholar 

  • Van der Perk, M., de Zorzi, P., Barbizzi, S., Belli, M., Fajgelj, A., Sansone, U., et al. (2008). The effect of short-range spatial variability on soil sampling uncertainty. Applied Radiation and Isotopes, 66, 1582–1587.

    Article  Google Scholar 

  • Webster, R., Welham, S. J., Potts, J. M., & Oliver, M. A. (2006). Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis of variance and residual maximum likelihood. Computers and Geosciences, 32, 1320–1333.

    Article  Google Scholar 

  • Wedepohl, K. H. (1964). Untersuchungen am Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente. Geochimica et Cosmochimica Acta, 25, 305–364.

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank Monika Preis from the engineering company “Schnittstelle Boden” (Ober-Mörlen) for kind support in providing management and fertilization data of the study sites. The cooperation with the Association of the German Agricultural Analysis and Research Institutes (VDLUFA) is greatly acknowledged. The following professional soil samplers participated in the sampling trials: J. Balsing (Oldenburg), M. Blödner (Jena), T. Blumstengel (Rostock), O. Dillmann (Münster), H. Geyer (Jena), Goll (Karlsruhe), L. Herold (Jena), A. Hoppe (Leipzig), G. Hörig (Leipzig), W. Klein (Speyer), C. Laue (Hameln), Maul (Kassel), Paris (Bernburg), A. Pudimat (Rostock), Dr. H. Schaaf (Kassel), S. Schnersch (Karlsruhe), D. Virkus (Bernburg) and H. Wundlechner (München). We acknowledge the support of Christian Kleimeier (Institute for Land Use, University of Rostock), Ulrich Kurfürst (University of Applied Sciences, Fulda), and Manfred Munzert (Bavarian State Research Centre for Agriculture, Freising-Weihenstephan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Buczko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buczko, U., Kuchenbuch, R.O., Übelhör, W. et al. Assessment of sampling and analytical uncertainty of trace element contents in arable field soils. Environ Monit Assess 184, 4517–4538 (2012). https://doi.org/10.1007/s10661-011-2282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2282-5

Keywords

Navigation