Skip to main content

Advertisement

Log in

Land use effects on macrobenthic communities in southeastern United States tidal creeks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Runoff from impervious land cover has a major impact on headwater tidal creek ecosystems resulting from ever increasing development along the coastline. Tidal creek habitats can serve as “early warning systems” for anthropogenic stressors due to their proximity to the uplands. In this study, the macrobenthic community was sampled along the longitudinal gradient of tidal creeks (i.e., first order, second order, and third order) in North Carolina, South Carolina, and Georgia which varied in their levels of watershed development (salt marsh, forested, suburban, and urban). This study was designed to assess the condition of macrobenthic communities in tidal creek ecosystems under varying levels of anthropogenic stressors and test whether the conclusions of a previous study in South Carolina (Holland et al., J Exp Mar Biol Ecol 298:151–178, 2004) could be generalized to the southeastern USA. Metrics of community-level and species-specific response within tidal creeks draining watersheds of varying degrees of impervious cover suggest the macrobenthic community may be a useful indicator of development in tidal creeks ecosystems. The differences observed when data from all three states were pooled was consistent with previous findings in South Carolina tidal creeks which illustrates that macrobenthic communities in tidal creeks may react to watershed development in similar patterns along the southeastern coast of the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., et al. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience, 51, 633–641.

    Article  Google Scholar 

  • Bilkovic, D. M., Roggero, M., Hershner, C. H., & Havens, K. H. (2006). Influence of land use on macrobenthic communities in nearshore estuarine habitats. Estuaries and Coasts, 29, 1185–1195.

    Google Scholar 

  • Blumenshine, S. C., Vadeboncoeur, Y., Lodge, D. M., Cottingham, K. L., & Knight, S. E. (1997). Benthic-pelagic links: Responses of benthos to water-column nutrient enrichment. Journal of North American Benthological Society, 16, 466–479.

    Article  Google Scholar 

  • Chapman, P. M. (2001). Utility and relevance of aquatic oligochaetes in ecological risk assessment. Hydrobiologia, 463, 149–169.

    Article  Google Scholar 

  • Clark, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Cushing, C. E. (1994). The conception and testing of the river continuum concept. Bulletin Nabs, 11, 225–229.

    Google Scholar 

  • Day, J. W. Jr., Westphal, A., Pratt, R., Hyfield, E., Rybczyk, J., Kemp, G. P., et al. (2006). Effects of the long-term municipal effluent discharge on the nutrient dynamics, productivity, and benthic community structure of a tidal freshwater forested wetland in Louisiana. Ecological Engineering, 27, 242–257.

    Article  Google Scholar 

  • Delgado, J. D., Nunez, J., Riera, R., & Monterroso, O. (2003). Abundance and diversity patterns of annelids from intertidal sandy beaches in Iceland. Hydrobiologia, 496, 311–319.

    Article  Google Scholar 

  • DiDonato, G. T., Stewart, J. R., Sanger, D. M., Robinson, B. J., Thompson, B. C., Holland, A. F., et al. (2008). Effects of changing land use on the microbial water quality of tidal creeks. Marine Pollution Bulletin, 58(1), 97–106. doi:10.1016/j.marpolbul.2008.08.019.

    Article  Google Scholar 

  • Environmental Protection Agency (EPA). (2000). Estuarine and coastal marine waters: Bioassessment and biocriteria technical guidance. Washington: EPA-882-F-00-011. 13.7, 55–64.

  • Filipowicz, A. B. (2004). Physical, chemical and biological quality of headwater tidal creeks of the May River estuary, Beaufort County, South Carolina. Masters Thesis, College of Charleston, Charleston, SC.

  • Finogenova, N. P. (1996). Oligochaete communities at the mouth of the Neva and their relationship to anthropogenic impact. Hydrobiologia, 334, 185–191.

    Article  Google Scholar 

  • Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.

    Article  Google Scholar 

  • Giere, O. (2006). Ecology and biology of marine Oligochaeta—an inventory rather than another review. Hydrobiologia, 564, 103–116.

    Article  Google Scholar 

  • Gillett, D. J., Holland, A. F., & Sanger, D. M. (2005). Secondary production of a dominant oligochaete (Monopylephorus rubroniveus) in the tidal creeks of South Carolina and its relation to ecosystem characteristics. Limnology and Oceanography, 50, 566–577.

    Article  Google Scholar 

  • Gillett, D. J., Holland, A. F., & Sanger, D. M. (2007). On the ecology of oligochaetes: Monthly variation of community composition and environmental characteristics in two South Carolina tidal creeks. Estuaries and Coasts, 30, 238–252.

    Google Scholar 

  • Hackney, C. T., Burbanck, W. D., & Hackney, O. P. (1976). Biological and physical dynamics of a Georgia tidal creek. Chesapeake Science, 17, 271–280.

    Article  Google Scholar 

  • Holland, A. F. (2000). Coastal sentinels. South Carolina Wildlife Magazine, Nov.–Dec., 37–40.

  • Holland, A. F., Sanger, D. M., Gawle, C. P., Lerberg, S. B., Santiago, M. S., Riekerk, G. H. M., et al. (2004). Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology, 298, 151–178.

    Article  Google Scholar 

  • Karr, J. R. (1998). Rivers as sentinels: Using the biology of rivers to guide landscape management. In R. J. Naiman & R. E. Bilby (Eds.), River ecology and management: Lessons from the Pacific coastal ecoregion (pp. 502–528). New York: Springer.

    Google Scholar 

  • Klein, R. D. (1979). Urbanization and stream quality impairment. Water Resources Bulletin, 15, 948–962.

    Google Scholar 

  • Kneib, R. T. (1997). The role of tidal marshes in the ecology of estuarine nekton. Oceanographic Marine Biology Annual Review, 35, 163–220.

    Google Scholar 

  • Lerberg, S. B., Holland, A. F., & Sanger, D. M. (2000). Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries, 23, 838–853.

    Article  CAS  Google Scholar 

  • Macfarlane, G. R., & Booth, D. J. (2001). Estuarine macrobenthic community structure in the Hawkesbury River, Australia: Relationships with sediment physiochemical and anthropogenic parameters. Environmental Monitoring and Assessment, 72, 51–78.

    Article  CAS  Google Scholar 

  • Mallin, M. A., Burkholder, J. M., Cahoon, L. B., & Posey, M. H. (2000). North and South Carolina coasts. Marine Pollution Bulletin, 41, 56–75.

    Article  CAS  Google Scholar 

  • Martin, P., Martens, K., & Goddeeris, B. (1999). Oligochaeta from the abyssal zone of Lake Baikal (Siberia, Russia). Hydrobiologia, 406, 165–174.

    Article  Google Scholar 

  • McCall, P. L., & Fisher, J. B. (1980). Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In R. O. Brinkhurst & D. G. Cook (Eds.), Aquatic Oligochaete Biology (pp. 253–388). New York: Plenum.

    Google Scholar 

  • Mykra, H., Heino, J., & Muotka, T. (2004). Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications. Environmental Management, 34, 341–352.

    Article  Google Scholar 

  • Plumb, R. H., Jr. (1981). Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. Prepared for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Filled Material. Vicksburg, MS: Environmental Laboratory, U.S. Army Waterways Experiment Station

  • Rodriguez, P. (1999). Monopylephorus camachoi nov. sp., a new ryhacodriline worm (Tubificidae: Clitellata) from the Coiba Island, on the east Pacific Coast of Panama. Hydrobiologia, 406, 49–55.

    Article  Google Scholar 

  • Sanger, D. M., Holland, A. F., & Scott, G. I. (1999a). Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Archives of Environmental Contamination and Toxicology, 37, 445–457.

    Article  CAS  Google Scholar 

  • Sanger, D. M., Holland, A. F., & Scott, G. I. (1999b). Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of organic contaminants. Archives of Environmental Contamination and Toxicology, 37, 458–471.

    Article  CAS  Google Scholar 

  • Sanger, D., Blair, A., DiDonato, G., Washburn, T., Jones, S., Chapman, R., et al. (2008). Support for integrated ecosystem assessments of NOAA’s National Estuarine Research Reserves Systems (NERRS), volume I: The impacts of coastal development on the ecology and human well-being of tidal creek ecosystems of the U. S. Southeast. NOAA Technical Memorandum NOS NCCOS, 82, 76. (CHHR).

  • Seys, J., Vinex, M., & Meine, P. (1999). Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia, 406, 119–132.

    Article  Google Scholar 

  • Shenker, J. M., & Dean, J. M. (1979). The utilization of an intertidal salt marsh creek by larval and juvenile fishes: Abundance, diversity and temporal variation. Estuaries, 2, 154–163.

    Article  Google Scholar 

  • Shirley, T. C., & Loden, M. S. (1982). The Tubificidae (Annelida, Oligochaeta) of a Louisiana estuary: Ecology and systematic, with the description of a new species. Estuaries, 5, 47–56.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38, 913–920.

    Google Scholar 

  • Thorp, J. H., & Bergey, E. A. (1981). Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology, 62, 365–375.

    Article  Google Scholar 

  • Van Dolah, R. F., Hyland, J. L., Holland, A. F., Rosen, J. S., Snoots, T. R. (1999). A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA. Marine Environmental Research, 48, 269–283.

    Article  Google Scholar 

  • Van Dolah, R. F., Riekerk, G. H. M., Bergquist, D. C., Felber, J., Chestnut, D. E., & Holland, A. F. (2007). Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina’s coastal zone. Science of the Total Environment, 390, 142–154.

    Article  Google Scholar 

  • Verdonschot, P. F. M. (2001). Hydrology and substrates: Determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia, 463, 249–262.

    Article  Google Scholar 

  • Ysebaert, T., De Neve, L., & Meire, P. (2000). The subtidal macrobenthos in the mesohaline part of the Schelde Estuary (Belgium): Influenced by man? Journal of the Marine Biological Association of the UK, 30, 587–597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Sanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Washburn, T., Sanger, D. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Environ Monit Assess 180, 177–188 (2011). https://doi.org/10.1007/s10661-010-1780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1780-1

Keywords

Navigation