Skip to main content

Advertisement

Log in

Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to characterize environmental vanadium distribution, mobility, and bioaccumulation, a total of 55 soil samples and 36 plant samples were collected in four typical land-use districts in Panzhihua region, Southwestern China. Soil samples were analyzed with the modified Community Bureau of Reference (BCR) sequential extraction procedure, and the content of vanadium in soil and plant was determined by ICP-AES. The total content of vanadium was 208.1–938.4 mg kg − 1 in smelting area, 111.6–591.2 mg kg − 1 in mining area, 94.0–183.6 mg kg − 1 in urban park, and 71.7–227.2 mg kg − 1 in agricultural area, respectively, while the bio-available content of vanadium was characterized that the polluted areas (mining area 18.8–83.6 mg kg − 1, smelting area 41.7–132.1 mg kg − 1) and the unpolluted area (agricultural area 9.8–26.4 mg kg − 1, urban park 9.9–25.2 mg kg − 1). In addition, the contamination degree of vanadium in soil was smelting area > mining area > agricultural area ≈ urban park. Moreover, the fraction of vanadium in each sequential extraction characterized that residual fraction > oxidizable fraction > reducible fraction > acid soluble fraction. The bioaccumulation of vanadium from soil to plant was weak to intermediate absorption. Therefore, some countermeasures such as soil monitoring and remediation should be to take in the sooner future, especially in mining and smelting area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelone, M., & Bini, C. (1992). Trace elements concentrations in soils and plants of Western Europe. In D. C. Adriano (Ed.), Biogeochemistry of trace metals. London: Lewis.

    Google Scholar 

  • Anke, M. (2004). Vanadium. In: E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (2nd ed., pp. 1171–1191). Weinheim: Wiley.

    Chapter  Google Scholar 

  • Araújo, G. C. L., Gonzalez, M. H., Ferreira, A. G., Nogueira, A. R. A., & Nobrega, J. A. (2002). Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochimica Acta B, 57, 2121–2132.

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (1999). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Vanadium.

  • Chen, Z. L., & Owens, G. (2008). Trends in speciation analysis of vanadium in environmental samples and biological fluids—A review.Analytica Chimica Acta, 607, 1–14.

    Article  CAS  Google Scholar 

  • Chen, J., Wei, F., Zheng, C., Wu, Y., & Adriano, C. D. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57/58, 699–712.

    Article  Google Scholar 

  • Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemical Reviews, 104(2), 849–902.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Thomas, R. P., McVey, S. E., Perala, R., Littlejohn, D., & Ure, A. M. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.

    Article  CAS  Google Scholar 

  • Dudka, S., & Market, B. (1992). Baseline concentrations of As, Ba, Be, Li, Nb, Sr and V in surface soils of Poland. Science of the Total Environment, 122, 279–290.

    Article  CAS  Google Scholar 

  • Eriksson, J. E. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertilizers, precipitation and in oil and crops. Swedish EPA Rep 5159, Stockholm.

  • Ferreira, A., Morgado, P., Batista, M. J., Ferreira, L., Pereira, V., Pinto, M. S., et al. (2001). Low-density geochemical mapping in Portugal.Applied Geochemistry, 16, 1323–1331.

    Article  CAS  Google Scholar 

  • Govindaraju, K. (1994). Compilation of working values and sample description for 383 geostandards. Geostandards Newsletters; Special Issue, 18, 1–158.

    CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcal?de Henares, Spain: Human health risks. Environment International, 28, 159–164.

    Article  CAS  Google Scholar 

  • Greger, M., Malm, T., & Kautsky, L. (2007). Heavy metal transfer from composted macroalgae to crops. European Journal of Agronomy, 26, 257–65.

    Article  CAS  Google Scholar 

  • Gummow, B., Kirsten, W. F. A., Gummow, R. J., & Heesterbeek, J. A. (2006). A stochastic exposure assessment model to estimate vanadium intake by beef cattle used as sentinels for the South African vanadium mining industry. Preventive Veterinary Medicine, 76, 167–184.

    Article  CAS  Google Scholar 

  • Hassinen, V., Vallinkoski, V. M., Issakainen, S., Tervahauta, A., Kärenlampi, S., & Servomaa, K. (2009). Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula × tremuloides) grown in contaminated soil. Environmental Pollution, 157, 922–930.

    Article  CAS  Google Scholar 

  • Hope, B. K. (1997). An assessment of the global impact of anthropogenic vanadium. Biogeochemistry, 37, 1–13.

    Article  CAS  Google Scholar 

  • ISO (1995). Soil quality—Extraction of trace elements soluble in aqua regia. Geneva: ISO, ISO 11466:1995.

  • ISO (1998). Soil quality—Determination of organic carbon by sulfochromic oxidation. Geneva: ISO, ISO 14235.

  • ISO (2005). Soil quality—Determination of pH. Geneva: ISO, ISO 10390.

  • ISO (2007). Soil quality—Determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalt trichloride solution. Geneva: ISO, ISO 23470.

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1993). Biogeochemistry of trace elements. Warsaw: PWN.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of trace elements (in Polish) (pp. 184–192). Warsaw: PWN.

    Google Scholar 

  • Kar, B. B., Datta, P., & Misra, V. N. (2004). Spent catalyst: Secondary source for molybdenum recovery. Hydrometallurgy, 72, 87–92.

    Article  CAS  Google Scholar 

  • Koljonen, T. (1992). Suomen geokemian atIn\, wit 2: morceni- Geochemical Atlas of Finland, Part 2 Till. Geological Survey of Finland, Espoo, 21X pp.; I I Appendices.

  • Kovalevskii, A. L. (1969). Some observations in biogeachemical parameters (in Russian). Trudy Buryat Inst Estest Venn Nauk, 2, 195–214.

    Google Scholar 

  • Kubová, J., Matúš, P., Bujdoš, M., Hagarová, I., & Medved, J. (2008). Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta, 75(4), 1110–1122.

    Article  Google Scholar 

  • Lepp, N. W., Edwards, R., & Jones, K. C. (1995). Heavy metals in soil. London: Blackie.

    Google Scholar 

  • Li, X., Coles, B. J., Ramsay, M. H., & Thornton, I. (1995). Chemical partitioning of the new National Institute of Standards and Technology standard reference materials (SRM 2709–2711) by sequential extraction using inductively coupled plasma atomic emission spectrometry. Analyst, 120, 1415–1419.

    Article  CAS  Google Scholar 

  • Liao, Z. (1992). Environmental chemistry and biological effects of trace elements. Beijing: China Environmental Science Press.

    Google Scholar 

  • Makovnikova, J., Barancikova, G., Dlapa, P., & Dercova, K. (2006). Inorganic contaminants in soil ecosystems. Chemicke Listy, 100(6), 424–432.

    CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellance, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • McGrath, D. (1996). Application of single and sequential extraction procedures to polluted and unpolluted soils. Science of the Total Environment, 178, 37–44.

    Article  CAS  Google Scholar 

  • Mountouris, A., Voutsas, E., & Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44, 1136–1141.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Metal pollution of soils and vegetation in an area with petrochemical industry. Science of the Total Environment, 321, 59–69.

    Article  CAS  Google Scholar 

  • Nagaraju, A., & Karimulla, S. (2002). Accumulation of elements in plants and soils in and around Nellore mica belt, Andhra Pradesh, India—A biogeachemical study. Environmental Geology, 41, 852–860.

    Article  CAS  Google Scholar 

  • Narwal, R. P., & Singh, B. R. (1998). Heavy Metal Fractionation and Extractability in Dredged Sediment Derived Surface Soils. Water Air and Soil Pollution, 102(3–4), 313–328.

    Google Scholar 

  • Nirel, P. M. V., & Morel, F. M. M. (1990). Technical note: Pitfalls of sequential extractions. Water Research, 24(8), 1055–1056.

    Article  CAS  Google Scholar 

  • Nriagu, J., & Pirrone, N. (1998). Emission of vanadium into the atmosphere. In J. Nriagu (Ed.), Vanadium in the environment. Part I: Chemistry and biochemistry (pp. 25–36). New York: Wiley.

    Google Scholar 

  • Óvári, M., Csukas, M., & Zaray, G. Y. (2001). Speciation of beryllium, nickel, and vanadium in soil samples from Csepel Island, Hungary. Fresenius Journal of Analytical Chemistry, 370, 768–775.

    Article  Google Scholar 

  • Panichev, N., Mandiwana, K., Moema, D., Molatlhegi, R., & Ngobeni, P. (2006). Distribution of vanadium species between soil and plants in the vicinity of vanadium mine. Journal of Hazardous Materials, 137, 649–653.

    Article  CAS  Google Scholar 

  • Perelman, A. I. (1966). The geochemistry of land areas (in Russian). Moscow: Izd Vish Shk.

    Google Scholar 

  • Poledniok, J., & Buhl, F. (2003). Speciation of vanadium in soil. Talanta, 59, 1–8.

    Article  CAS  Google Scholar 

  • Protasova, N. A., & Kopayeva, M. T. (1985). Trace and dispersed elements in soils of Russian Plateau. Pochvovedeniye, 1, 29–37 (in Russian).

    Google Scholar 

  • Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152, 330–341.

    Article  CAS  Google Scholar 

  • Pyrzynska, K., & Wierzbicki, T. (2004). Determination of vanadium species in environmental samples. Talanta, 64, 823–829.

    Article  CAS  Google Scholar 

  • Rapant, S., Rapošová, M., Bodiš, D., Marsina, K., & Slaninka, I. (1999). Environmental-geochemical mapping program in the Slovak Republic. Journal of Geochemical Exploration, 66(2), 151–158.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C. M., Ure, A. M., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Rawlins, B. G., Lister, T. R., & Mackenzie, A. (2002). Trace metal pollution of soils in northern England. Environmental Geology, 42, 612–620.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (1998). Chemical elements in the environment. Heidelberg: Springer.

    Google Scholar 

  • Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., et al. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.

    Article  CAS  Google Scholar 

  • Salminen, R., & Gregorauskiene, V. (2000). Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry, 15, 647–653.

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., et al. (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. 525 p. ISBN: 951-690-921-3 (printed) & 951-690-913-2 (electronic).

  • Soldi, T., Riolo, C., Alberti, G., Gollorini, M., & Peloso, G. F. (1996). Environmental vanadium distribution from an industrial settlement. Science of the Total Environment, 181, 45–50.

    Article  CAS  Google Scholar 

  • Takeda, A., Kimura, K., & Yamasaki, S. I. (2004). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307.

    Article  CAS  Google Scholar 

  • Taner, M. F. (2002). Vanadium-geology, processing and applications: Proceedings of international symposium on vanadium (p. 265). Canadian Institute of Mining, Metallurgy and Petroleum.

  • Teng, Y., Ni, S., & Zhang, C. (2001). Environmental geochemistry of mining activities in Panzhihua Region, SW China. Journal of China University of Geosciences, 12(4), 296–300.

    CAS  Google Scholar 

  • Teng, Y., Ni, S., Tuo, X., Zhang, C., & Ma, Y. (2002). Geochemical baseline and trace metal pollution of soil in Panzhihua mining area. Chinese Journal of Geochemistry, 21(3), 274–281.

    Article  CAS  Google Scholar 

  • Teng, Y., Ni, S., Zhang, C., Wang, J., Lin, X., & Huang, Y. (2006). Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area. Chinese Journal of Geochemistry, 25(4), 378–384.

    Article  CAS  Google Scholar 

  • Tessier, A., Cambell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tokalioğlu, S., & Kartal, S. (2005). Comparison of metal fractionation results obtained from single and BCR sequential extractions. Bulletin of Environmental Contamination and Toxicology, 75, 180–188.

    Article  Google Scholar 

  • Tume, P., Bech, J., & Longan, L. (2006). Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological Engineering, 27, 145–152.

    Article  Google Scholar 

  • Underwood, E. J. (1977). Trace elements in human and animal nutrition. New York: Academic.

    Google Scholar 

  • Ure, A. M., Quevauviller, P. h., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • Van Herreweghe, S., Swennen, R., Vandecasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 132, 323–342.

    Article  Google Scholar 

  • World Health Organization (1988). Vanadium: Environmental Health Criteria. Geneva: WHO.

    Google Scholar 

  • World Health Organization (2001). Vanadium Pentoxide and other Inorganic Vanadium Compounds. Concise International Chemical Assessment Document 29. Geneva: WHO.

    Google Scholar 

  • Xu, Z. (2009). Environmental geochemistry of heavy metals in Panzhihua V-Ti-maganetite ore deposit. Ph.D Dissertation, Chengdu Univsity of Technology.

  • Yay, O. D., Alagha, O., & Tuncel, G. (2008). Multivariate statistics to investigate metal contamination in surface soil. Journal of Environmental Management, 86, 581–594.

    Article  CAS  Google Scholar 

  • Žemberyová, M., Jankoviè, R., Hagarová, I., & Kuss, H. M. (2007). Electrothermal atomic absorption spectrometric determination of vanadium in extracts of soil and sewage sludge certified reference materials after fractionation by means of the Communities Bureau of Reference modified sequential extraction procedure. Spectrochimica Acta B, 62, 509–513.

    Article  Google Scholar 

  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.

    Article  CAS  Google Scholar 

  • Zhang, L., & Zhou, K. (1992). Background values of trace elements in the source area of the Yangtze River. Science of the Total Environment, 125, 391–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguo Teng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Y., Yang, J., Sun, Z. et al. Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China. Environ Monit Assess 176, 605–620 (2011). https://doi.org/10.1007/s10661-010-1607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1607-0

Keywords

Navigation